Hibernate程序性能优化的考虑要点(1)

发表于:2007-06-11来源:作者:点击数: 标签:
初用HIBERNATE的人也许都遇到过 性能 问题,实现同一功能,用HIBERNATE与用JDBC性能相差十几倍很正常,如果不及早调整,很可能影响整个项目的进度。 大体上,对于HIBERNATE性能调优的主要考虑点如下: ◆数据库设计调整 ◆HQL优化 ◆API的正确使用(如根据不

初用HIBERNATE的人也许都遇到过性能问题,实现同一功能,用HIBERNATE与用JDBC性能相差十几倍很正常,如果不及早调整,很可能影响整个项目的进度。

大体上,对于HIBERNATE性能调优的主要考虑点如下:

◆数据库设计调整

◆HQL优化

◆API的正确使用(如根据不同的业务类型选用不同的集合及查询API)

◆主配置参数(日志,查询缓存,fetch_size, batch_size等)

◆映射文件优化(ID生成策略,二级缓存,延迟加载,关联优化)

◆一级缓存的管理

◆针对二级缓存,还有许多特有的策略

◆事务控制策略

1、数据库设计

a) 降低关联的复杂性

b) 尽量不使用联合主键

c) ID的生成机制,不同的数据库所提供的机制并不完全一样

d) 适当的冗余数据,不过分追求高范式

2、HQL优化

HQL如果抛开它同HIBERNATE本身一些缓存机制的关联,HQL的优化技巧同普通的SQL优化技巧一样,可以很容易在网上找到一些经验之谈。

3、主配置

a) 查询缓存,同下面讲的缓存不太一样,它是针对HQL语句的缓存,即完全一样的语句再次执行时可以利用缓存数据。但是,查询缓存在一个交易系统(数据变更频繁,查询条件相同的机率并不大)中可能会起反作用:它会白白耗费大量的系统资源但却难以派上用场。

b) fetch_size,同JDBC的相关参数作用类似,参数并不是越大越好,而应根据业务特征去设置

c) batch_size同上。

d) 生产系统中,切记要关掉SQL语句打印。

4、缓存

a) 数据库级缓存:这级缓存是最高效和安全的,但不同的数据库可管理的层次并不一样,比如,在ORACLE中,可以在建表时指定将整个表置于缓存当中。

b) SESSION缓存:在一个HIBERNATE SESSION有效,这级缓存的可干预性不强,大多于HIBERNATE自动管理,但它提供清除缓存的方法,这在大批量增加/更新操作是有效的。比如,同时增加十万条记录,按常规方式进行,很可能会发现OutofMemeroy的异常,这时可能需要手动清除这一级缓存:Session.evict以及Session.clear

c) 应用缓存:在一个SESSIONFACTORY中有效,因此也是优化的重中之重,因此,各类策略也考虑的较多,在将数据放入这一级缓存之前,需要考虑一些前提条件:

i. 数据不会被第三方修改(比如,是否有另一个应用也在修改这些数据?)

ii. 数据不会太大

iii. 数据不会频繁更新(否则使用CACHE可能适得其反)

iv. 数据会被频繁查询

v. 数据不是关键数据(如涉及钱,安全等方面的问题)。

缓存有几种形式,可以在映射文件中配置:read-only(只读,适用于很少变更的静态数据/历史数据),nonstrict-read-write,read-write(比较普遍的形式,效率一般),transactional(JTA中,且支持的缓存产品较少)

d) 分布式缓存:同c)的配置一样,只是缓存产品的选用不同,在目前的HIBERNATE中可供选择的不多,oscache, jboss cache,目前的大多数项目,对它们的用于集群的使用(特别是关键交易系统)都持保守态度。在集群环境中,只利用数据库级的缓存是最安全的。

5、延迟加载

a) 实体延迟加载:通过使用动态代理实现

b) 集合延迟加载:通过实现自有的SET/LIST,HIBERNATE提供了这方面的支持

c) 属性延迟加载

6、方法选用

a) 完成同样一件事,HIBERNATE提供了可供选择的一些方式,但具体使用什么方式,可能用性能/代码都会有影响。显示,一次返回十万条记录(List/Set/Bag/Map等)进行处理,很可能导致内存不够的问题,而如果用基于游标(ScrollableResults)或Iterator的结果集,则不存在这样的问题。

b) Session的load/get方法,前者会使用二级缓存,而后者则不使用。

c) Query和list/iterator,如果去仔细研究一下它们,你可能会发现很多有意思的情况,二者主要区别(如果使用了Spring,在HibernateTemplate中对应find,iterator方法):


共2页: 1 [2] 下一页

原文转自:http://www.ltesting.net

评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
...