图3展示了如何用缺陷检出预估去跟踪并与实际进行比对。很显然,实际测量结果和预估之间有些小偏差,但他们的轨迹大体一致。他们还让我们有信心做到在项目末期每月缺陷检出率在20个以内,这是我们建议的最低可接收的交付标准。
图3 带有实际标绘的缺陷检出率计划
从1978年以来,QSM已经收集了超过10000份完整的软件项目数据。通过对这些数据分析发现,存在着决定瑞利缺陷模型持续时间和量级的特定输入。这些输入能使该模型针对给定情况提供一份精确的预测。以下是QSM模型会使用的三个宏参数:
这些驱动因子会影响我们在软件项目中看到的缺陷行为模式。下文将深入考究这些驱动因子。除了另行说明之外,这些结果都是基于QSM数据分析得出的。
规模
从历史来看,我们发现随着项目规模的增长系统内的缺陷数也会随之增长(如图4所示)。简单来说,构建更大的项目使开发人员有了更多导致系统缺陷的可能性,同时也需要去完成更多的测试。缺陷增长率几乎是呈线形的。
同样,随着规模的增长MTTD也会随之减少。这是由于系统内的缺陷数增加了,这通常是由于跨大型团队在所难免的交流复杂性所导致的。因为系统中的缺陷更多了,缺陷的时间间隔就减少了。依此类推,因为时间间隔太少,所以大型项目的可靠性往往较低。这是这个行业的典型情况。
原文转自:http://www.infoq.com/cn/articles/understanding-quality-reliability-qsm