数据结构学习(C++)——二叉树【2】

发表于:2007-07-01来源:作者:点击数: 标签:
线索化二叉树 这是数据结构课程里第一个碰到的难点,不知道你是不是这样看,反正我当初是费了不少脑细胞——当然,恼人的矩阵压缩和相关的加法乘法运算不在考虑之列。我费了不少脑细胞是因为思考:他们干什么呢?很欣喜的看到在这本黄皮书上,这章被打了*号

线索化二叉树

这是数据结构课程里第一个碰到的难点,不知道你是不是这样看,反正我当初是费了不少脑细胞——当然,恼人的矩阵压缩和相关的加法乘法运算不在考虑之列。我费了不少脑细胞是因为思考:他们干什么呢?很欣喜的看到在这本黄皮书上,这章被打了*号,虽然我不确定作者是不是跟我一个想法——线索化二叉树在现在的PC上是毫无用处的!——不知我做了这个结论是不是会被人骂死,^_^。

为了证明这个结论,我们来看看线索化二叉树提出的缘由:第一,我们想用比较少的时间,寻找二叉树某一个遍历线性序列的前驱或者后继。当然,这样的操作很频繁的时候,做这方面的改善才是有意义的。第二,二叉树的叶子节点还有两个指针域没有用,可以节省内存。说真的,提出线索化二叉树这样的构思真的很精巧,完全做到了“废物利用”——这个人真应该投身环保事业。但在计算机这个死板的东西身上,人们的精巧构思往往都是不能实现的——为了速度,计算机的各个部件都是整齐划一的,而构思的精巧往往都是建立在组成的复杂上的。

我们来看看线索化二叉树究竟能不能达到上面的两个目标。

求遍历后的线性序列的前驱和后继。前序线索化能依次找到后继,但是前驱需要求双亲;中序线索化前驱和后继都不需要求双亲,但是都不很直接;后序线索化能依次找到前驱,但是后继需要求双亲。可以看出,线索化成中序是最佳的选择,基本上算是达到了要求。

节省内存。添加了两个标志位,问题是这两个位怎么储存?即使是在支持位存储的CPU上,也是不能拿位存储器来存的,第一是因为结构体成员的地址是在一起的,第二是位存储器的数目是有限的。因此,最少需要1个字节来储存这两个标志位。而为了速度和移植,一般来说,内存是要对齐的,实际上根本就没节省内存!然而,当这个空间用来储存双亲指针时,带来的方便绝对不是线索化所能比拟的,前面已经给出了无栈的非递归遍历。并且,在线索化二叉树上插入删除操作附加的代价太大。

综上,线索化最好是中序线索化(前序后序线索化后还得用栈,何必要线索化呢),附加的标志域空间至少1个字节,在32位的CPU会要求对齐到4字节,还不如存储一个双亲指针,同样能达到中序线索化的目的,并且能带来其他的好处。所以,线索化二叉树在现在的PC上是毫无用处的!

由于对其他体系不太了解,以下观点姑妄听之。在内存空间非常充裕的现在,一个节点省2~3个字节实在是没什么意思(实际上由于对齐还省不出来);而在内存非常宝贵的地方(比如单片机),会尽量避免使用树结构——利用其他的方法。所以,现在看来,线索化二叉树真的是毫无用处了。

二叉搜索树

这恐怕是二叉树最重要的一个应用了。它的构想实际是个很自然的事情——查找值比当前节点小转左,大转右,等则查到,到头了就是没找着。越自然的东西越好理解,也就越不需要我废话。在给出BST的实现之前,我们要在二叉树的类中添加一个打印树状结构的成员函数,这样,就能清楚的看出插入和删除过程。

public:

void print()

{

       queue< BTNode<T>* > a; queue<bool> flag; ofstream outfile("out.txt");

       BTNode<T>* p = root; BTNode<T> zero; bool v = true;

       int i = 1, level = 0, h = height();

       while (i < 2<<h)

       {

              if (i == 1<<level)

              {

                     cout << endl << setw(2 <<(h - level)); level++;

                     if (v) cout << p->data;

                     else cout << ´ ´;

              }

              else

              {

                     cout << setw(4 <<(h - level + 1));

                     if (v) cout << p->data;

                     else cout << "  ";

              }

              if (p->left) { a.push(p->left); flag.push(true); }

              else { a.push(&zero); flag.push(false); }

              if (p->right) { a.push(p->right); flag.push(true); }

              else { a.push(&zero); flag.push(false); }

              p = a.front(); a.pop(); v = flag.front(); flag.pop(); i++;

       }

       cout << endl;

}

打印树状结构的核心是按层次遍历二叉树,但是,二叉树有许多节点缺左或右子树,连带的越到下面空隙越大。为了按照树的结构打印,必须把二叉树补成完全二叉树,这样下面的节点就知道放在什么位置了——a.push(&zero);但是这样的节点不能让它打印出来,所以对应每个节点,有一个是否打印的标志,按理说pair结构很合适,为了简单我用了并列的两个队列,一个放节点指针——a,一个放打印标志——flag。这样一来,循环结束的标志就不能是队列空——永远都不可能空,碰到NULL就补一个节点——而是变成了到了满二叉树的最后一个节点2^(height+1)-1。——黄皮书对于树高的定义是,空树为的高度为-1。

对于输出格式,注意的是到了第1、2、4、8号节点要换行,并且在同一行中,第一个节点的域宽是后序节点的一半。上面的函数在树的层次少于等于5(height<=4)的时候能正常显示,再多的话就必须输出到文件中去ofstream outfile("out.txt");——如果层次再多的话,打印出来也没什么意义了。

二叉搜索树的实现

实际上就是在二叉树的基础上增加了插入、删除、查找。

#include "BaseTree.h"

template <class T>

class BSTree : public BTree<T>

{

public:

       BTNode<T>* &find(const T &data)

       {

              BTNode<T>** p = &root; current = NULL;

              while(*p)

              {

                     if ((*p)->data == data) break;

                     if ((*p)->data < data) { current = *p; p = &((*p)->right); }

                     else { current = *p; p = &((*p)->left); }

              }

              return *p;

       }

       bool insert(const T &data)

       {

              BTNode<T>* &p = find(data); if (p) return false;

              p = new BTNode<T>(data, NULL, NULL, current); return true;

       }

       bool remove(const T &data)

       {

              return remove(find(data));

       }

private:

bool remove(BTNode<T>* &p)

{

       if (!p) return false; BTNode<T>* t = p;

       if (!p->left || !p->right)

       {

              if (!p->left) p = p->right; else p = p->left;

              if (p) p->parent = current;

              delete t; return true;

       }

       t=p->right;while(t->left) t=t->left;p->data=t->data;current=t->parent;

       return remove(current->left==t?current->left:current->right);

       }

};

以上代码有点费解,有必要说明一下——非线性链式结构操作的实现都是很让人费神。insert和remove都是以find为基础的,因此必须让find能最大限度的被这两个操作利用。

l         对于insert,需要修改查找失败时的指针内容,显然这是个内部指针(在双亲节点的内部,而不是象root和current那样在节点外面指向节点),这就要求find返回一个内部指针的引用。但是C++的引用绑定到一个对象之后,就不能再改变了,因此在find内部的实现是一个二重指针。insert操作还需要修改插入的新节点的parent指针域,因此在find中要产生一个能被insert访问的指向find返回值所在节点的指针,这里用的是current。实际上find返回的指针引用不是current->left就是current->right。这样一来,insert的实现就非常简单了。

l         对于remove,需要修改查找成功时的指针内容,同样是个内部指针。在find的基础上,很容易就能得到这个内部指针的引用(BTNode<T>* &p = find(data)。

Ø         在p->left和p->right中至少有一个为NULL的情况下,如果p->left ==NULL,那么就重连右子树p = p->right,反之,重连左子树p = p->left。注意,左右子树全空的情况也包含在这两个操作中了——在p->left ==NULL的时候重连右子树,而这时p->right也是NULL——因此不必列出来。如果重连后p不为空,需要修改p->parent = current。

Ø         若p->left和p->right都不为空,可以转化为有一个为空。例如一个中序有序序列[1,2,3,4,5],假设3既有左子树又有右子树,那么它的前驱2一定缺右子树,后继4一定缺少左子树。【注1】这样一来删除节点3就等效成从[1,2,3(4),4,5]删除节点4。这样就可以利用上面的在p->left和p->right中至少有一个为NULL的情况下的方法了。还是由于C++的引用不能改变绑定对象,这里是用利用递归来解决的,还好最多只递归一次。如果用二重指针又是满天星星了,这就是明明是尾递归却没有消去的原因。

【注1】这是因为,如果3既有左子树又有右子树,那么2一定在3的左子树上,4一定在3的右子树上;如果2有右子树,那么在2和3之间还应该有一个节点;如果4有左子树,那么3和4之间也应该还有一个节点。

【闲话】上面关于remove操作p->left和p->right都不为空的处理方法的讲解,源于严蔚敏老师的课件,看完后我豁然开朗,真不知道为什么她自己那本《数据结构(C语言版)》这里写的那么难懂,我是死活没看明白。

 


原文转自:http://www.ltesting.net