数据结构学习(C++)——稀疏矩阵(十字链表【2】)

发表于:2007-07-01来源:作者:点击数: 标签:
如果你细想想,就会发现,非零元节点如果没有指示位置的域,那么做加法和乘法时,为了确定节点的位置,每次都要遍历行和列的链表。因此,为了运算效率,这个域是必须的。为了看出十字链表和单链表的差异,我从单链表派生出十字链表,这需要先定义一种新的结

如果你细想想,就会发现,非零元节点如果没有指示位置的域,那么做加法和乘法时,为了确定节点的位置,每次都要遍历行和列的链表。因此,为了运算效率,这个域是必须的。为了看出十字链表和单链表的差异,我从单链表派生出十字链表,这需要先定义一种新的结构,如下:

class MatNode

{

public:

       int data;

       int row, col;

       union { Node<MatNode> *down; List<MatNode> *downrow; };

};

另外,由于这样的十字链表是由多条单链表拼起来的,为了访问每条单链表的保护成员,要声明十字链表类为单链表类的友元。即在class List的声明中添加friend class Matrix;

稀疏矩阵的定义和实现

#ifndef Matrix_H

#define Matrix_H

 

#include "List.h"

 

class MatNode

{

public:

       int data;

       int row, col;

       union { Node<MatNode> *down; List<MatNode> *downrow; };

       MatNode(int value = 0, Node<MatNode> *p = NULL, int i = 0, int j = 0)

              : data(value), down(p), row(i), col(j) {}

friend ostream & operator << (ostream & strm, MatNode &mtn)

       {

              strm << ´(´ << mtn.row << ´,´ << mtn.col << ´)´ << mtn.data;

              return strm;

       }

};

 

class Matrix : List<MatNode>

{

public:

       Matrix() : row(0), col(0), num(0) {}

       Matrix(int row, int col, int num) : row(row), col(col), num(num) {}

       ~Matrix() { MakeEmpty(); }

      

       void MakeEmpty()

       {

              List<MatNode> *q;

              while (first->data.downrow != NULL)

              {

                     q = first->data.downrow;

                     first->data.downrow = q->first->data.downrow;

                     delete q;

              }

              List<MatNode>::MakeEmpty();

              row = col = num = 0;

       }

 

       void Input()

       {

              if (!row) { cout << "输入矩阵行数:"; cin >> row; }

             if (!col) {      cout << "输入矩阵列数:"; cin >> col; }

              if (!num) { cout << "输入非零个数:"; cin >> num; }

              if (!row || !col || !num) return;

              cout << endl << "请按顺序输入各个非零元素,以列序为主,输入0表示本列结束" << endl;

              int i, j, k, v;//i行数 j列数 k个非零元 v非零值

              Node<MatNode> *p = first, *t;

              List<MatNode> *q;

              for (j = 1; j <= col; j++) LastInsert(MatNode(0, NULL, 0, j));

              for (i = 1; i <= row; i++)

              {

                     q = new List<MatNode>;

                     q->first->data.row = i;

                     p->data.downrow = q;

                     p = q->first;

              }

              j = 1; q = first->data.downrow; First(); t = pNext();

              for (k = 0; k < num; k++)

              {

                     if (j > col) break;

                     cout << endl << "输入第" << j << "列非零元素" << endl;

                     cout << "行数:"; cin >> i;

                     if (i < 1 || i > row) { j++; k--; q = first->data.downrow; t = pNext(); continue; }

                     cout << "非零元素值"; cin >> v;

                     if (!v)  { k--; continue; }

                     MatNode matnode(v, NULL, i, j);

                     p = new Node<MatNode>(matnode);

                     t->data.down = p; t = p;

                     while (q->first->data.row != i) q = q->first->data.downrow;

                     q->LastInsert(t);

              }

       }

 

       void Print()

       {

              List<MatNode> *q = first->data.downrow;

              cout << endl;

              while (q != NULL)

              {

                     cout << *q;

                     q = q->first->data.downrow;

              }

       }

 

Matrix & Add(Matrix &matB)

{

       //初始化赋值辅助变量

       if (row != matB.row || col != matB.col || matB.num == 0) return *this;

       Node<MatNode> *pA, *pB;

       Node<MatNode> **pAT = new Node<MatNode>*[col + 1];

       Node<MatNode> **pBT = new Node<MatNode>*[matB.col + 1];

       List<MatNode> *qA = pGetFirst()->data.downrow, *qB = matB.pGetFirst()->data.downrow;

       First(); matB.First();

      for (int j = 1; j <= col; j++)

       {

              pAT[j] = pNext();

              pBT[j] = matB.pNext();

       }

 

       //开始

      for (int i = 1; i <= row; i++)

       {

             qA->First(); qB->First();

              pA = qA->pNext(); pB = qB->pNext();

              while (pA != NULL && pB !=NULL)

              {

                     if (pA->data.col == pB->data.col)

                     {

                            pA->data.data += pB->data.data;

                            pBT[pB->data.col]->data.down = pB->data.down; qB->Remove();

                            if (!pA->data.data)

                            {

                                   pAT[pA->data.col]->data.down = pA->data.down;

                                   qA->Remove();

                            }

                            else

                            {

                                   pAT[pA->data.col] = pA;

                                   qA->pNext();

                            }

                     }

 

                     else

                     {

                            if (pA->data.col > pB->data.col)

                            {

                                   pBT[pB->data.col]->data.down = pB->data.down;

                                   qB->pRemove();

                                   pB->data.down = pAT[pB->data.col]->data.down;

                                   pAT[pB->data.col]->data.down = pB;

                                   pAT[pB->data.col] = pB;

                                   qA->InsertBefore(pB);

                            }

 

                            else if (pA->data.col < pB->data.col)

                            {

                                   pAT[pA->data.col] = pA;

                                   qA->pNext();

                            }

                     }

              pA = qA->pGet();pB = qB->pGet();

              }

             

              if (pA == NULL && pB != NULL)

              {

                     qA->pGetPrior()->link = pB;

                     qB->pGetPrior()->link = NULL;

                     while (pB != NULL)

                     {

                            pBT[pB->data.col]->data.down = pB->data.down;

                            pB->data.down = pAT[pB->data.col]->data.down;

                            pAT[pB->data.col]->data.down = pB;

                            pAT[pB->data.col] = pB;

                            pB = pB->link;

                     }

              }

 

              if (pA !=NULL)

              {

                     while (qA->pGet() != NULL)

                     {

                            pAT[pA->data.col] = pA;

                            qA->pNext();

                     }

              }

      

       qA = qA->first->data.downrow; qB = qB->first->data.downrow;

       }

        delete []pAT; delete []pBT;
return *this;

}

private:

       int row, col, num;

};

 

#endif

【说明】对于十字链表来说,只要记住对每个节点的操作,要同时考虑它的两个指针域,那么,各种算法的理解都不是很难。比如说矩阵加法,“两个矩阵相加和两个一元多项式相加极为相似,所不同的是一元多项式只有一个变元(指数项),而矩阵中每个非零元有两个变元(行值和列值),每个节点既在行表中又在列表中,致使插入和删除节点时指针的修改稍为复杂,故需要更多的辅助指针。”(《数据结构(C语言版)》)其实private的row等可以放在首行的头节点里的,但为了清晰一点(本来就够乱了),我把他们单立出来了。另外,很多地方考虑不是很周全,要是不按照注明的要求使用,很容易就会出错。

【后记】按理说,十字链表应该不算是线性链式结构,按照原书的安排,放在链表这章不是很合适;《数据结构(C语言版)》将它和广义表放在一章还是合理的。其实十字链表不是很难,就是很烦人;并且,如果不是数值运算,基本很少用到矩阵,就算是用到矩阵运算,在矩阵规模不大的时候,可以用二维数组代替十字链表。从历届考研题来看,这部分几乎没有题,原因就是麻烦(你写起来麻烦,他批起来也麻烦)、不常用、算法固定没新意。所以,你要是闹心,这部分跳过去也可以。


原文转自:http://www.ltesting.net