为C++标准库容器写自己的内存分配程序

发表于:2007-06-11来源:作者:点击数: 标签:
根据sgi 的STL源码的二级分配算法改写的内存池分配程序,只要稍微修改就可以实现共享内存方式管理,使用C++标准库容器中的map,set,multimap,multiset测试通过,vector测试通不过,原因是在内存回收的时候考虑的比较简单,vector每次分配内存个数不固定,

根据sgi 的STL源码的二级分配算法改写的内存池分配程序,只要稍微修改就可以实现共享内存方式管理,使用C++标准库容器中的map,set,multimap,multiset测试通过,vector测试通不过,原因是在内存回收的时候考虑的比较简单,vector每次分配内存个数不固定,回收也不固定,这样的话,程序还需要继续完善。

内存池管理程序源码如下:

#ifndef MY_ALLOCATOR_H_

#define MY_ALLOCATOR_H_

#include "stdafx.h"

#include <limits>

#include <iostream>

namespace happyever 

{

enum { NODENUMS = 2 };

union _Obj 

{

union _Obj* M_free_list_link;

char M_client_data[1];    

} ;

typedef union _Obj Obj;

struct _Cookie

{

int iShmKey;        /* 共享内存键值 */

int iShmID;         /* iShmKey对应的shmid */

int iSemKey;        /* 锁信号键值 */

int iSemID;         /* 锁信号标识 */

int iTotalsize;    /* 容器总容量 */

void* pStartall;   /* 共享内存自身地址 */

char* pStartfree;  /* 自由空间的开始地址*/

char* pEndfree;    /* 自由空间的结束地址*/

int iUseNum[NODENUMS];

/*用来存放free_list中节点的size*/

short sFreelistIndex[NODENUMS];

/*存放分配内存节点的链表*/

Obj* uFreelist[NODENUMS];

};

typedef struct _Cookie Cookie;

//Obj;

//Cookie;

static Cookie *pHead = NULL;

template <class T>

class MyAlloc 

{

private:

static const int ALIGN = sizeof(Obj);

int round_up(int bytes);

int freelist_index(int bytes);

int freelist_getindex(int bytes);

char* chunk_alloc(int size, int *nobjs);

void* refill(int num,int n);

public:

// type definitions

typedef T        value_type;

typedef T*       pointer;

typedef const T* const_pointer;

typedef T&       reference;

typedef const T& const_reference;

typedef std::size_t    size_type;

typedef std::ptrdiff_t difference_type;

template <class U>

struct rebind 

{

typedef MyAlloc<U> other;

};

pointer address (reference value) const 

{

return &value;

}

const_pointer address (const_reference value) const 

{

return &value;

}

MyAlloc() throw() 

{

std::cout<<"MyAlloc"<<std::endl;

}

MyAlloc(const MyAlloc& x) throw() 

{

std::cout<<"const MyAlloc"<<std::endl;

}

template <class U>

MyAlloc (const MyAlloc<U>& x) throw()

{

std::cout<<"const MyAlloc<U>"<<std::endl;

}

~MyAlloc() throw() 

{

std::cout<<"~MyAlloc"<<std::endl;

}

size_type max_size () const throw() 

{

return std::numeric_limits<std::size_t>::max() / sizeof(T);

}

//void PrintFreelistAndCookie();

pointer allocate (size_type num, const void* = 0) 

{

pointer ret = 0;

Obj** my_free_list;

Obj* result;

int index;

// print message and allocate memory with global new

std::cerr << "allocate " << num << " element(s)"

<< " of size " << sizeof(T) << std::endl;

index = freelist_index(sizeof(T));

if(index >= NODENUMS)

{

return NULL;

}

my_free_list = pHead->uFreelist + index;

//Lock(semid,LOCK_NUM);

result = *my_free_list;

if (result == 0)

{

ret = (pointer)refill((int)num, round_up(sizeof(T)));

}

else

{

*my_free_list = result->M_free_list_link;

ret = (pointer)result;

}

//UnLock(semid,LOCK_NUM);

pHead->iUseNum[index] = pHead->iUseNum[index] + (int)num;

if(0 == ret)

{

std::cerr << "alloc memory fail!" << std::endl;

exit(1);

}

std::cerr << " allocated at: " << (void*)ret << std::endl;

PrintFreelistAndCookie();

return ret;

}

void construct (pointer p, const T& value) 

{

// initialize memory with placement new

new((void*)p)T(value);

}

void destroy (pointer p) 

{

// destroy objects by calling their destructor

p->~T();

}

void deallocate (pointer p, size_type num) 

{

Obj** my_free_list;

Obj* q ;

int index;

index = freelist_getindex(sizeof(T));

if(index >= NODENUMS)

{

std::cerr << "deallocate memory fail!" << std::endl;

exit(1);

}

my_free_list = pHead->uFreelist + index;

q = (Obj*) p;

//Lock(semid,LOCK_NUM);

/*这个地方可能会有问题*/

//for(int i=0 ;i<(int)num ; i++)

{

q->M_free_list_link = *my_free_list;

*my_free_list = q;

}

//UnLock(semid,LOCK_NUM);

pHead->iUseNum[index] = pHead->iUseNum[index] - (int)num;



std::cerr << "deallocate " << num << " element(s)"

<< " of size " << sizeof(T)

<< " at: " << (void*)p << std::endl;

PrintFreelistAndCookie();

}

};

template <class T>

int MyAlloc<T>::round_up(int bytes)

{

int i;

i = bytes;

if(bytes < ALIGN)

{

i = ALIGN;

}

std::cout<<"round_up:bytes="<<bytes<<" , return="<<i<<std::endl;

return i;

};

template <class T>

int MyAlloc<T>::freelist_index(int bytes)

{

int i;

for(i=0 ; i< NODENUMS ; i++)

{

if(pHead->sFreelistIndex[i] == bytes)

break;

}

if(i >= NODENUMS)

{

for(i=0 ; i< NODENUMS ; i++)

{

if(pHead->sFreelistIndex[i] == 0)

{

pHead->sFreelistIndex[i] = bytes;

std::cout<<"freelist_index:bytes="<<bytes<<" , return="<<i<<std::endl;

return i;

}

}

}

std::cout<<"freelist_index:bytes="<<bytes<<" , return="<<i<<std::endl;

return i;

};

template <class T>

int MyAlloc<T>::freelist_getindex(int bytes)

{

int i;

for(i=0 ; i< NODENUMS ; i++)

{

if(pHead->sFreelistIndex[i] == bytes)

break;

}

std::cout<<"freelist_getindex:bytes="<<bytes<<" , return="<<i<<std::endl;

return i;

};

template <class T>

char* MyAlloc<T>::chunk_alloc(int size, int *nobjs)

{

char* result;

int counts = *nobjs;

int total_bytes = size * counts;

int bytes_left = int(pHead->pEndfree - pHead->pStartfree);

std::cout<<"chunk_alloc:total_bytes = "<<total_bytes

<<",bytes_left = "<<bytes_left<<std::endl;

if (bytes_left >= total_bytes)

{

result = pHead->pStartfree;

pHead->pStartfree += total_bytes;

std::cout<<"chunk_alloc:total_bytes = "<<total_bytes

<<",result = "<<*result<<",start_free = "<<&(pHead->pStartfree)<<std::endl;

}

else if (bytes_left >= size)

{

counts = bytes_left/size;

total_bytes = size * counts;

result = pHead->pStartfree;

pHead->pStartfree += total_bytes;

*nobjs = counts;

std::cout<<"chunk_alloc:total_bytes = "<<total_bytes<<",nobjs = "<<nobjs

<<",result = "<<*result<<",start_free = "<<&(pHead->pStartfree)<<std::endl;

}

else

{

/*还需要处理回收其他空闲freelist里面的空间*/

result = NULL;

}

return(result);

};

template <class T>

void* MyAlloc<T>::refill(int num,int n)

{

int counts = num;

int *nobjs = &counts;

char* chunk;

Obj** my_free_list;

Obj* result;

Obj* current_obj;

Obj* next_obj;

int i;

chunk = chunk_alloc(n, nobjs);

if(chunk == NULL)

{

return(chunk);

}

counts = *nobjs;

if (1 == counts)

{

return(chunk);

}

my_free_list = pHead->uFreelist + freelist_index(n);

result = (Obj*)chunk;

*my_free_list = next_obj = (Obj*)(chunk + n*num);

for (i = 1; ; i++)

{

current_obj = next_obj;

next_obj = (Obj*)((char*)next_obj + n);

if (counts - 1 == i)

{

current_obj->M_free_list_link = 0;

break;

}

else

{

current_obj->M_free_list_link = next_obj;

}

}

return(result);

};

/*这个函数可以改写成自己的共享内存分配函数*/  

static void InitShm()

{

int i,size=1000;

pHead = (Cookie*)malloc(sizeof(Cookie)+size);

pHead->iTotalsize = sizeof(Cookie)+size;

pHead->pStartall  = pHead;

pHead->pStartfree = (char*)pHead + sizeof(Cookie);

pHead->pEndfree   = (char*)pHead + pHead->iTotalsize;

for(i=0 ; i <NODENUMS ; i++)

{

pHead->sFreelistIndex[i]=0;

pHead->uFreelist[i]=0;

pHead->iUseNum[i]=0;

}

}

static void PrintFreelistAndCookie()

{

int i,j;

Obj* my_free_list;

std::cout<<"Cookie info :"<<std::endl;

std::cout<<"sizeof(struct Cookie) = "<<sizeof(Cookie)<<std::endl;

std::cout<<"Totalsize     = "<<pHead->iTotalsize<<std::endl;

std::cout<<"UsedSize      = "<<int(pHead->pStartfree-(char*)pHead)<<std::endl;

std::cout<<"FreepoolSize  = "<<int(pHead->pEndfree - pHead->pStartfree)<<std::endl;

std::cout<<"Startall      = "<<&(pHead->pStartall)<<std::endl;

std::cout<<"Startfree     = "<<&(pHead->pStartfree)<<std::endl;

std::cout<<"Endfree       = "<<&(pHead->pEndfree)<<std::endl;

std::cout<<"nFreelist info :"<<std::endl;

for(i=0 ; i<NODENUMS ; i++)

{

j=0;

std::cout<<"iUseNum["<<i<<"] = "<<pHead->iUseNum[i]<<std::endl;

std::cout<<"FreelistIndex["<<i<<"] = "<<pHead->sFreelistIndex[i]<<std::endl;

my_free_list = pHead->uFreelist[i];

if(my_free_list->M_client_data != 0)

{

while(my_free_list->M_client_data != 0)

{

j++;

my_free_list = my_free_list->M_free_list_link;

}

std::cout<<"free_list["<<i<<"]; node counts="<<j<<std::endl;

}

}

}

template <class T1, class T2>

bool operator== (const MyAlloc<T1>&,const MyAlloc<T2>&) throw() 

{

return true;

}

template <class T1, class T2>

bool operator!= (const MyAlloc<T1>&,const MyAlloc<T2>&) throw() 

{

return false;

}

}

#endif /*MY_ALLOCATOR_H_*/

测试程序的源码如下:

// MyStl.cpp : 定义控制台应用程序的入口点。

//

#include "stdafx.h"

#include <map>

#include <vector>

#include <string>

#include <utility>

#include <iostream>

#include "MyAlloc.h"

using namespace std;

int _tmain(int argc, _TCHAR* argv[])

{

happyever ::InitShm();

multimap<string,int,less<string>,happyever ::MyAlloc<string> > m;

m.insert(make_pair(string("Harry"), 32));

m.insert(make_pair(string("Mary"), 59));

m.insert(make_pair(string("Roger"), 18));

m.insert(make_pair(string("Nancy"), 37));

m.insert(make_pair(string("Mary"), 23));



typedef multimap<string,int,less<string>,happyever ::MyAlloc<string> >::iterator Iter;

for (Iter p = m.begin(); p != m.end(); p++)

{

cout << p->first << "," << p->second << endl;

}

Iter p = m.find("Harry");

m.erase(p);

/*p = m.find("Harry");

cout << "Harry is: " << p->second << "." << endl;*/

for (Iter p = m.begin(); p != m.end(); p++)

{

cout << p->first << "," << p->second << endl;

}



return 0;

}

以上程序在vs2005,vc6上测试通过。使用MinGW编译的时候只需要去掉vc的预编译头文件#include “stdafx.h”即可。

以上程序只要稍微修改,就可以实现共享内存的管理,可以方便的使用标准库提供的容器。加上信号量的锁机制。

以上为了学习而改写的SGI的stl二级分配算法实现的。以上代码存在一定的局限性。我另外完整实现了共享内存管理的STL标准的alloctor程序,使用posix信号量加锁。目前应用在aix的xlC编译环境下。因为源码涉及公司的商业秘密,所以不能公开。但基本上以上源码已经体现了自己管理内存的完整思路,供这方面需求的朋友一起学习研究用。

【责任编辑:火凤凰 TEL:(010)68476606-8007】


原文转自:http://www.ltesting.net

...