1引言
今天,以太网技术已成为局域网中不可或缺、暂时还无可取代的技术。
随着局域网的广泛普及、网络规模的扩大、以太网接入技术的快速发展、网络传输速率的不断增长,以及网络互联互通和下一代网络技术的应用需求,以太网的传输方式、传输能力、服务质量越来越受到关注,其中传输距离、传输速率是以太网传输能力的重要体现,是以太网从传统的局域网技术走向城域网技术甚至广域网技术的关键。然而,从技术的角度来看,传输速率越高,传输受限距离越短;从应用需求来说,越是高速率,越可能用于骨干传输,其传输距离要求越长。也正因为这一对矛盾的存在,以及高速以太网向更大范围的园区骨干和城域应用的快速扩展,以太网相关标准的传输距离限制常常遇到挑战:为何受到标准距离的限制?能否突破以满足实际距离需求?本文以基于光纤介质的吉位以太网相关标准为参照,着重从媒体访问控制方式、传输损耗、传输色散等角度分析以太网传输距离的限制因素和突破办法。
2吉位以太网相关标准的距离限制
自从1998年6月IEEE 802.3z吉位以太网标准(有关1 000 Base-SX,1 000 Base-LX和1 000 Base-CX接口)正式通过以来,先后通过了IEEE 802.3ab(有关1 000 Base-T接口)吉位以太网标准和IEEE 802.3ae(有关10 GBase-SR, 10 GBase-LR,10 GBase-ER,10 GBase-SW,10 GBase-LW,10 GBase-EW和10 GBase-LX4接口)10 G以太网标准。但就长距离传输的吉位以太网来说,主要关心的是与光纤介质相关的吉位以太网标准——IEEE 802.3z。
依据IEEE 802.3z标准,不同光纤带宽对应的波长、最大传输距离如表1所示。其中,工作波长850 nm对应1 000 Base-SX,工作波长1 310 nm对应1 000 Base-LX。
表1吉位以太网对应不同光纤类型、波长的最大传输距离
光纤类型工作波长(nm)模带宽(MHz•km)最大传输距离(m)
62.5 μm 多模850160220
62.5 μm多模850200275
50 μm多模850400500
50 μm多模850500550
62.5 μm多模1 310500550
50 μm多模1 310400/500550
10 μm单模1 310N/A5 000
表1中与传输距离限制紧密相关的一个重要参数是模带宽,是一段光纤所能通过的最大调制频率脉冲的调制频率和光纤长度的乘积,它体现了光纤传输信息的能力,主要体现了色散对光纤系统的传输速率、传输距离的影响。表1中有关参数的给定条件分析:①均采用LD光源而不再像低速率系统那样采用LED光源;②考虑了不同类型、不同等级的光纤,特别是传统的光纤,新出现的光纤未列出但其将提供更好的性能;③单模光纤模式色散可忽略不计,其对应模带宽值足够大;④最大传输距离是指无中继放大、无色散补偿时的距离。
3影响传输距离的关键因素
影响以太网传输距离的因素很多,如噪声、串扰等,其中较关键的因素主要有媒体访问控制方法、信号传输的衰减和信号传输的色散。下面分别就其原理、影响、改进办法进行分析。
3.1媒体访问控制方法对传输距离的制约以太网的媒体访问控制方法CSMA/CD是制约传输距离的最基本的因素,它随以太网技术的出现而出现,并随着传输速率的提高而限制距离更短。CSMA/CD的基本思想是先听后说,遇干扰时找机会再说,即对于同一网段上的每个节点,共享同一传输介质,监听同一网段的状态,并可能试图发送数据,但同一时间段只能有一个节点能够发送合法数据,其他节点可接收被传输的数据,若节点发送的数据信号被其他信号所混淆,说明已发生冲突,需用退让算法进行避让。典型的退让算法是截断二进制指数退让算法(Truncated Binary Exponential Backoff):
(1)当发送某数据第一次出现冲突时,取?m=2;
(2)退让时间为r个时间片,每个时间片等于网络中端到端往返的传播时延,r为0~2?m间的随机数;
(3)第n次出现冲突时,m?=min(?n,10);
(4)n?的最大值一般设为16,超过时丢弃数据而不再重发。
对于10 Mbps,100 Mbps以太网,最小帧长度为64字节,时间片为发送512比特所需的时延,对于1 Gbps以太网,最小帧长度仍为64字节,时间片则变为发送4 096比特所需的时延。最小帧长度不变是为了保证吉位以太网的兼容性,但基于CSMA/CD,为保证冲突能即时、有效地检测,往返距离必须足够小,以使最短帧的第一位在最后一位发送前往返整个网段,按信号传送速度20万km/s计算,对于10 Mbps,100 Mbps和吉位以太网的往返距离分别为10 240 m,1 024 m和102.4 m。考虑到连接器等设备带来的延迟,特别是速率提高使发送最短帧的时间更短,从而大大缩短了冲突域的直径,网段长度变成不可接受的几十米。解决此问题的办法是在以太网帧后增加一个与数据相区别的扩展字段,其长度等于时间片内可发送比特数减去最小帧比特数。由此也导致吉位以太网传输效率的降低,解决办法是引入帧的突发机制,即一旦成功地发送了一个帧,该站可不用重新竞争而继续发送其他帧,其最大突发限制为65 536比特。
3.2信号衰减对传输距离的制约
信号在传输介质中传播时,其能量会逐渐损耗,由此决定着信号在无中继时的最大传输距离。当信号在光纤中传播时,传输到?L处的平均光功率与入纤时平均光功率呈指数规律减少,即P(L)=P(0)10?-αL/10,衰减系数α?的单位为dB/km。
对吉位以太网而言,表1中最大传输距离的确定主要是依据对应传输系统的损耗特性,包括光纤损耗、插入损耗、光通道代价、发送功率、接收灵敏度、富裕度等。在IEEE802.3z中,基于最坏条件考虑,给出了在最大传输距离时的链路功率预算,见表2。
在工程实施时,如果相关参数值都符合表2中数据,在标准中规定距离内的应用是肯定能成功的。在实际工程中,常常有超出标准中规定距离的应用需求,
表2最坏条件下的链路功率预算
参数850 nm,62.5 μm850 nm,50 μm1 300 nm,62.5 μm1 300 nm,50 μm1 300 nm,10 μm,SMF
链路功率预算(dB)7.57.57.57.57.57.57.58.0
链路距离(m)2202755005505505505505 000
通道插入损耗(dB)2.382.603.373.562.352.352.354.75
链路功率代价(dB)4.274.294.073.573.485.083.963.27
最小平均发射功率(dBm)-9.5-11.5-11.5-11.5-11.0
接收灵敏度(dBm)-17-19
消光比(dB)9
富裕度(dB)0.840.600.050.371.670.071.190.16
或基于成本等因素考虑,需采用标准距离限制更短但费用低廉的方案,因此,有必要对表中参数进行具体分析:
(1)标准中数值确定的前提:综合考虑了各种可能的情况,如不同厂家、不同型号的连接器,不同厂家、不同型号的光纤的传输特性差别很大,如早期光纤。
(2)标准对传输距离的扩展留有“后门”:如果符合其他的规范条件,超出距离范围是可以接受的。
(3)表中参数关系:
①链路功率预算与收发设备:链路功率预算的值为最小平均发射功率与接收灵敏度的差,由此可见,若实际发送设备和接收设备的参数值与表中不同,只要其差值符合链路功率预算要求,也应能满足实际需要。
②通道插入损耗:包括链路段中的连接损耗、光纤线路损耗等。
③链路功率代价除与链路的损耗有关外,与链路的色散、噪声和发送端的消光比等有关,其原因是波形失真导致接收机的灵敏度下降。
④链路功率预算与富裕度:某一网段要能成功实施,即在满足误码率要求情况下实现信号的无中继传输,其链路功率预算值应足够大,或者说其通道插入损耗和链路功率代价应足够小,以使系统的功率有富裕而非不足,即应满足:
裕度=链路功率预算值-通道插入损耗-链路功率代价>0
(4)表中数据的进一步分析:
①表中通道插入损耗值应包含至少两对连接器的插入损耗和光纤线路的损耗。以MT-RJ接头每对最大插入损耗值为0.75 dB来看,两对的最大插入损耗值为1.5 dB,若采用62.5 μm的多模光纤在850 nm波段传输信号,按最大光纤衰减3.75 dB/km计算,在最大距离即220 m时有0.825 dB的损耗,故共有2.325 dB的通道插入损耗,仍然满足2.33 dB通道插入损耗的预算。对于常用的SC,ST和FC型号连接器,实际插入损耗小得多,以武汉某公司产品为例,其插入损耗为:单模:≤0.3 dB,多模:≤0.1 dB,即使是MT-RJ连接器,其实际插入损耗为:单模:≤0.7 dB,多模:≤0.45 dB;另一方面,新的多模光纤的衰减也已减小,在850 nm处<3.0 dB/km,在1 300 nm处<1.0 dB/km。由此可见,单就通道插入损耗值,实际功率预算有相当的富裕。
②表中链路功率预算值为7.5 dB或8.0 dB,实际设备若能提供更大的链路功率预算值,则意味着系统能提供更远的传输距离。
3.3色散对以太网传输距离的制约
光纤的色散是因光信号的不同频率成分和不同模式成分的传输速度不同而引起,它使光纤带宽变窄,从而限制了光纤的传输容量,同时也限制了光信号的无电中继传输距离。光纤的色散主要有色度色散、模式色散和偏振模色散,它们依所用光纤的类型、系统的传输速率、光源、调制方式等不同而对系统有不同的影响。
在高速率、长距离的光纤传输系统中,色散对系统有着明显的影响。如对于10 G以太网,若采用G.652单模光纤(NDSF),并采用EA调制器,工作波长惟1 550 nm,光源为带啁啾的单纵模激光源,此时,色散受限距离主要由频率啁啾功率代价和色度色散功率引起,其色散受限距离约34 km;同样环境用于2.5 Gb/s系统,其相应色散受限距离约600 km