btr0sea.cc::btr_search_update_block_hash_info();
…
// info->n_hash_potential
// 表示查询已经连续成功使用Hash Index,
// 或者是可能成功使用Hash Index的次数;
//BTR_SEARCH_BUILD_LIMIT
// 相同索引键值(键值前缀),针对当前索引
// Search Pach能够以Hash Index优化的次数,索引级别的;
if ((block->n_hash_helps > page_get_n_recs() / BTR_SEARCH_PAGE_BUILD_LIMIT)
&& (info->n_hash_potential >= BTR_SEARCH_BUILD_LIMIT))
…
return(TRUE);
B+树叶页面Adaptive Hash Index维护
一个B+树索引叶页面,对其进行Hash Index索引的流程:
btr0cur.cc::btr_cur_search_to_nth_level();
btr0sea.ic::btr_search_info_update();
btr0sea.cc::btr_search_info_update_slow();
// 根据当前Search Path的定位结果(cursor),以及Index的
// hash Index search info,重新计算Hash索引所需要的Key,
// 是完整的索引键值,或者是索引键值前缀
// 此处的判断逻辑较为复杂,需要持续学习!!
btr_search_info_update_hash();
…
// 根据前面提到的,判断当前页面是否需要进行Hash索引
btr_search_update_block_hash_info();
// 对当前页面中的所有记录,创建Hash索引,Hash键值为前面
// 提到的提取出来的完整索引键值或者键值前缀
// 若当前页面已经被Hash,则首先删除旧的Hash,然后增加新Hash
// 注意:
// 1. buffer header上有一个重要的参数——left_side,用于控制
// 拥有相同hash值的记录,是保持第一条,还是保存最后一条
// 2. index->search_info->ref_count:此参数用于标识当前索引有多少
// 页面被Hash索引了,在删除、关闭索引前,需要保证此计数归零
btr_search_build_page_hash_index();
Adaptive Hash Index的使用流程
Adaptive Hash Index的使用流程:
btr0cur.c::btr_cur_search_to_nth_level();
btr0sea.c::btr_search_guess_on_hash();
// 获取上一个进入Hash Index的叶页面,使用了索引中的多少个完全列,
// 以及最后一列使用了多少个Bytes用于计算Hash键值
cursor->n_fields = index->search_info->n_fields;
cursor->n_bytes = index->search_info->n_bytes;
// 根据选择的索引键值前缀,计算给定Tuple对应的Hash索引值
// 前提是,必须保证给定Tuple的列数量,要超过键值前缀数量;
fold = dtuple_fold(tuple, cursor->n_fields, cursor->n_bytes, index_id);
// 根据计算得来的fold,查询Adaptive Hash Index;
ha_search_and_get_data(btr_search_sys->hash_index, fold);
…
// 检查当前Hash Index命中的叶页面,是否满足Search Path的条件
btr0sea.cc::btr_search_check_guess();
page0page.ic::page_cmp_dtuple_rec_with_match();
// 对比叶页面中通过Hash Index定位到的当前记录,以及
// 用户给定的tuple (完整 or Partial),n_cmp为对比的列数,
// matched_fields为完全匹配的列数,*_bytes为第一个不匹配
// 列中匹配的字节数
// @return 1, 0, -1
// 1: dtuple大于页面中的rec
// 0: dtuple与页面中的rec相等
// -1: dtuple小于页面中的rec
rem0cmp.cc::cmp_dtuple_rec_with_match_low(dtuple, rec,
offsets, n_cmp, matched_fields, matched_bytes);
// 设置本次完全匹配的列数,以及最后一列匹配的字节数
*matched_fields = cur_field;
*matched_bytes = cur_bytes;
// 若查询模式为L or LE,则判断当前位置是否满足条件:
// 1. 条件一:当前Rec是否比查询条件更小
if (mode == PAGE_CUR_L)
if (cmp != 1)
goto exit_func;
// 2. 条件二:当前Record的下一条记录比查询条件更大
// (一). next_rec为SUPREMUM记录,并且当前页面为索引最后一个页面
// 则一定满足条件;
// (二). next_rec不为SUPREMUM记录,则比较next_rec与tuple,判断
// 比较的返回值是否为-1,标识tuple小于next_rec;
if((mode == PAGE_CUR_L) || (mode == PAGE_CUR_LE))
next_rec = page_rec_get_next(rec);
// 总结:当以上的条件均满足时,说明当前通过Hash Index定位的叶节点的位置是正确的。
// Hash Index命中,减少了B+-Tree Search Path开销,直接定位到了叶页面的正确位置
// 接下来,根据操作类型的不同,可以进行接下来的操作,例如:
// Range Scan操作:从当前位置开始,读取Range的第一条记录
// Unique Scan操作:从当前位置,读取满足Unique记录
// Insert操作:将记录Insert到当前位置;
// Delete操作: 删除当前位置的记录;
参考资料
[1] http://dev.mysql.com/doc/refman/5.5/en/innodb-adaptive-hash.html Adaptive Hash Indexes
原文转自:http://ourmysql.com/archives/1250