Oracle SQL依然无可替代--《Mastering Oracle SQL》
发表于:2007-07-02来源:作者:点击数:
标签:
天寒地冻,呆在家里又读完了《Mastering Oracle SQL 》2nd,发现Oracle的功能还是很强悍,光函数就有两百个,HSQL是很难比拟的。接下来的硬骨头,看来要么冒险用Hibernate3.0的SQL Mapping功能,要么就自己跑JDBC组装VO了。 1.报表合计专用的Rollup函数 销售
天寒地冻,呆在家里又读完了《Mastering Oracle
SQL》2nd,发现Oracle的功能还是很强悍,光函数就有两百个,HSQL是很难比拟的。接下来的硬骨头,看来要么冒险用Hibernate3.0的SQL Mapping功能,要么就自己跑JDBC组装VO了。 1.报表合计专用的Rollup函数
销售报表
广州 1月 2000元
广州 2月 2500元
广州 4500元
深圳 1月 1000元
深圳 2月 2000元
深圳 3000元
所有地区 7500元
以往的查询SQL:
Select area,month,sum(money) from SaleOrder group by area,month
然后广州,深圳的合计和所有地区合计都需要在程序里自行累计
1.其实可以使用如下SQL:
Select area,month,sum(total_sale) from SaleOrder group by rollup(area,month)
就能产生和报表一模一样的纪录 2.如果year不想累加,可以写成
Select year,month,area,sum(total_sale) from SaleOrder group by year, rollup(month,area)
另外Oracle 9i还支持如下语法:
Select year,month,area,sum(total_sale) from SaleOrder group by rollup((year,month),area)
3.如果使用Cube(area,month)而不是RollUp(area,month),除了获得每个地区的合计之外,还将获得每个月份的合计,在报表最后显示。 4.Grouping让合计列更好读
RollUp在显示广州合计时,月份列为NULL,但更好的做法应该是显示为"所有月份"
Grouping就是用来判断当前Column是否是一个合计列,1为yes,然后用Decode把它转为"所有月份"
Select Decode(Grouping(area),1,@#所有地区@#,area) area,
Decode(Grouping(month),1,@#所有月份@#,month),
sum(money)
From SaleOrder
Group by RollUp(area,month);
2.对多级层次查询的start with.....connect by
比如人员组织,产品类别,Oracle提供了很经典的方法
SELECT LEVEL, name, emp_id,manager_emp_id
FROM employee
START WITH manager_emp_id is null
CONNECT BY PRIOR emp_id = manager_emp_id;
上面的语句demo了全部的应用,start with指明从哪里开始遍历树,如果从根开始,那么它的manager应该是Null,如果从某个职员开始,可以写成emp_id=@#11@#
CONNECT BY 就是指明父子关系,注意PRIOR位置
另外还有一个LEVEL列,显示节点的层次 3.更多报表/分析决策功能
3.1 分析功能的基本结构
分析功能() over( partion子句,order by子句,窗口子句)
概念上很难讲清楚,还是
用例子说话比较好. 3.2 Row_Number 和 Rank, DENSE_Rank
用于选出Top 3 sales这样的报表
当两个业务员可能有相同业绩时,就要使用Rank和Dense_Rank
比如
金额 RowNum Rank Dense_Rank
张三 4000元 1 1 1
李四 3000元 2 2 2
钱五 2000元 3 3 3
孙六 2000元 4 3 3
丁七 1000元 5 5 4 这时,应该把并列第三的钱五和孙六都选进去,所以用Ranking功能比RowNumber保险.至于Desnse还是Ranking就看具体情况了。
SELECT salesperson_id, SUM(tot_sales) sp_sales,
RANK( ) OVER (ORDER BY SUM(tot_sales) DESC) sales_rank
FROM orders
GROUP BY salesperson_id
3.3 NTILE 把纪录平分成甲乙丙丁四等
比如我想取得前25%的纪录,或者把25%的纪录当作同一个level平等对待,把另25%当作另一个Level平等对待
SELECT cust_nbr, SUM(tot_sales) cust_sales,
NTILE(4) OVER (ORDER BY SUM(tot_sales) DESC) sales_quartile
FROM orders
GROUP BY cust_nbr
ORDER BY 3,2 DESC;
NTITLE(4)把纪录以 SUM(tot_sales)排序分成4份. 3.4 辅助分析列和Windows Function
报表除了基本事实数据外,总希望旁边多些全年总销量,到目前为止的累计销量,前后三个月的平均销量这样的列来参考.
这种前后三个月的平均和到目前为止的累计销量就叫
windows function, 见下例
SELECT month, SUM(tot_sales) monthly_sales,
SUM(SUM(tot_sales)) OVER (ORDER BY month
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) max_preceeding
FROM orders
GROUP BY month
ORDER BY month;
SELECT month, SUM(tot_sales) monthly_sales,
AVG(SUM(tot_sales)) OVER (ORDER BY month
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) rolling_avg
FROM orders
GROUP BY month
ORDER BY month;
Windows Function的关键就是Windows子句的几个取值
1 PRECEDING 之前的一条记录
1 FOLLOWING 之后的一条记录
UNBOUNDED PRECEDING 之前的所有记录
CURRENT ROW 当前纪录 4.SubQuery总结
SubQuery天天用了,理论上总结一下.SubQuery 分三种
1.Noncorrelated 子查询 最普通的样式.
2.Correlated Subqueries 把父查询的列拉到子查询里面去,头一回cyt教我的时候理解了半天.
3.Inline View 也被当成最普通的样式用了. 然后Noncorrelated 子查询又有三种情况
1.返回一行一列 where price < (select max(price) from goods )
2.返回多行一列 where price>= ALL (select price from goods where type=2)
or where NOT price< ANY(select price from goods where type=2)
最常用的IN其实就是=ANY()
3.返回多行多列 一次返回多列当然就节省了查询时间
UPDATE monthly_orders
SET (tot_orders, max_order_amt) =
(SELECT COUNT(*), MAX(sale_price)
FROM cust_order)
DELETE FROM line_item
WHERE (order_nbr, part_nbr) IN
(SELECT order_nbr, part_nbr FROM cust_order c)
原文转自:http://www.ltesting.net