J2SE 5.0专题 之 语言特性
1.1.背景 J2SE(TM)5.0正式发布至今已超过3个月的时间了,就在前不久,大概是在两周之前,Sun又发布了更新过的JDK5.0Update1,改掉了一些第一个版本中出现的 bug 。 由于 Java 社群等待这一从1.4向5.0版本升级已经有相当长的一段时间,大家都很关心5.0中有哪些
1.1. 背景
J2SE(TM) 5.0正式发布至今已超过3个月的时间了,就在前不久,大概是在两周之前,Sun又发布了更新过的JDK 5.0 Update 1,改掉了一些第一个版本中出现的
bug。
由于
Java社群等待这一从1.4向5.0版本升级已经有相当长的一段时间,大家都很关心5.0中有哪些值得关注的变化,于是blog的相关信息满天飞,我也兴冲冲地在自己的blog中添上了一系列的文章。无奈这些blog文章,包括我自己的在内,通常都是泛泛而谈,因此CSDN第二期Java电子
杂志的编辑们计划做一个
专题对这一话题与相关人士进行一番深入的探讨。
作为这期电子刊物的一部分,编辑们也邀请我更系统的探讨一下:J2SE(TM) 5.0中新引入的语言特性究竟在实际中有哪些用途,以及为什么要引入这些新特性。对此我深感荣幸。我本人很乐意将我的一些也许算得上经验的Java经验跟大家分享,希望这一篇小文能对大家了解J2SE(TM) 5.0有一定帮助。
1.2. 准备工作
首先,为了了解J2SE(TM) 5.0的新的语言特性,你需要
下载新版的JDK,在这里可以找到下载链接: http://java.sun.com/j2se/1.5.0/download.jsp 。当然,如果你已经有过手动配置Java环境的经历,我也建议你使用一个支持J2SE(TM) 5.0的IDE,推荐Eclipse SDK 3.1 M4,或者NetBeans IDE 4.0。两个都是
开源免费的,且很容易找到(Eclipse不用说了,NetBeans IDE 4.0有与JDK 5.0 Update 1的捆绑版)。
说点题外话,Java的版本号自从1.2开始,似乎就多少显得有点蹩脚。从1.2版本开始,Java (J2SE)被称作Java 2,而不是Java 1.2,现在则显得更加离奇:Java(TM) 2 Platform Standard Edition 5.0或者J2SE(TM) 5.0,而内部的版本号还是1.5.0。那么到底是1、2、还是5呢?来看看Sun官方网站是怎么说的:
从Java诞生至今已有9年时间,而从第二代Java平台J2SE算起也有5个年头了。在这样的背景下,将下一个版本的版本号从1.5改为5.0可以更好的反映出新版J2SE的成熟度、稳定性、可伸缩性和
安全性。
好吧,现在我们将面对如下一些名称,而它们指的基本上是同一个东西:
· Tiger
· Java(TM) 2 Platform Standard Edition 5.0
· J2SE(TM) 5.0
· Java version 1.5.0
· …
在本文中,为了方便起见,我将统一使用J2SE(TM) 5.0这个名称。
如果你对Java各个版本的代号感兴趣,就像这里的"Tiger",可以参考如下网址: http://java.sun.com/j2se/codenames.html 。透露一点:Java下一个版本(6.0)的代号是"Mustang"野马,再下一个版本(7.0)的代号是"Dolphin"海豚。
1.3. 概述
J2SE(TM) 5.0引入了很多激进的语言元素变化,这些变化或多或少减轻了我们
开发人员的一些编码负担,其中的大部分也必然会被应用到即将发布的J2EE(TM) 5.0中。主要的新特性包括:
· 泛型
· 增强的for循环
· 自动装箱和自动拆箱
· 类型安全的枚举
· 可变长度参数
· 静态引入
· 元数据(注解)
· C风格的格式化输出
这当中,泛型、枚举和注解可能会占用较大的篇幅,而其余的因为用法直截了当,抑或相对简单,我就稍作介绍,剩下的留给读者去思考、去探索了。
1.4. 泛型
泛型这个题目相当大,大到完全可以就这个话题写一本书。有关Java是否需要泛型和如何实现泛型的讨论也早就在Java社群广为流传。终于,我们在J2SE(TM) 5.0中看到了它。也许目前Java对泛型的支持还算不上足够理想,但这一特性的添加也经足以让我们欣喜一阵了。
在接下来的介绍中,我们会了解到:Java的泛型虽然跟C++的泛型看上去十分相似,但其实有着相当大的区别,有些细节的东西也相当复杂(至少很多地方会跟我们的直觉背道而驰)。可以这样说,泛型的引入在很大程度上增加了Java语言的复杂度,对初学者尤其是个挑战。下面我们将一点一点往里挖。
首先我们来看一个简单的使用泛型类的例子:
ArrayList<Integer> aList = new ArrayList<Integer>();
aList.add(new Integer(1));
// ...
Integer myInteger = aList.get(0);
我们可以看到,在这个简单的例子中,我们在定义aList的时候指明了它是一个直接受Integer类型的ArrayList,当我们调用aList.get(0)时,我们已经不再需要先显式的将结果转换成Integer,然后再赋值给myInteger了。而这一步在早先的Java版本中是必须的。也许你在想,在使用Collection时节约一些类型转换就是Java泛型的全部吗?远不止。单就这个例子而言,泛型至少还有一个更大的好处,那就是使用了泛型的容器类变得更加健壮:早先,Collection接口的get()和Iterator接口的next()方法都只能返回Object类型的结果,我们可以把这个结果强制转换成任何Object的子类,而不会有任何编译期的错误,但这显然很可能带来严重的运行期错误,因为在代码中确定从某个Collection中取出的是什么类型的对象完全是调用者自己说了算,而调用者也许并不清楚放进Collection的对象具体是什么类的;就算知道放进去的对象“应该”是什么类,也不能保证放到Collection的对象就一定是那个类的实例。现在有了泛型,只要我们定义的时候指明该Collection接受哪种类型的对象,编译器可以帮我们避免类似的问题溜到产品中。我们在实际工作中其实已经看到了太多的ClassCastException,不是吗?
泛型的使用从这个例子看也是相当易懂。我们在定义ArrayList时,通过类名后面的<>括号中的值指定这个ArrayList接受的对象类型。在编译的时候,这个ArrayList会被处理成只接受该类或其子类的对象,于是任何试图将其他类型的对象添加进来的语句都会被编译器拒绝。
那么泛型是怎样定义的呢?看看下面这一段示例代码:(其中用E代替在实际中将会使用的类名,当然你也可以使用别的名称,习惯上在这里使用大写的E,表示Collection的元素。)
public class TestGenerics<E> {
Collection<E> col;
public void doSth(E elem) {
col.add(elem);
// ...
}
}
在泛型的使用中,有一个很容易有的误解,那就是既然Integer是从Object派生出来的,那么ArrayList<Integer>当然就是ArrayList<Object>的子类。真的是这样吗?我们仔细想一想就会发现这样做可能会带来的问题:如果我们可以把ArrayList<Integer>向上转型为ArrayList<Object>,那么在往这个转了型以后的ArrayList中添加对象的时候,我们岂不是可以添加任何类型的对象(因为Object是所有对象的公共父类)?这显然让我们的ArrayList<Integer>失去了原本的目的。于是Java编译器禁止我们这样做。那既然是这样,ArrayList<Integer>以及ArrayList<String>、ArrayList<Double>等等有没有公共的父类呢?有,那就是ArrayList<?>。?在这里叫做通配符。我们为了缩小通配符所指代的范围,通常也需要这样写:ArrayList<? extends SomeClass>,这样写的含义是定义这样一个类ArrayList,比方说SomeClass有SomeExtendedClass1和SomeExtendedClass2这两个子类,那么ArrayList<? extends SomeClass>就是如下几个类的父类:ArrayList<SomeClass>、ArrayList<SomeExtendedClass1>和ArrayList<SomeExtendedClass2>。
接下来我们更进一步:既然ArrayList<? extends SomeClass>是一个通配的公用父类,那么我们可不可以往声明为ArrayList<? extends SomeClass>的ArrayList实例中添加一个SomeExtendedClass1的对象呢?答案是不能。甚至你不能添加任何对象。为什么?因为ArrayList<? extends SomeClass>实际上代表了所有ArrayList<SomeClass>、ArrayList<SomeExtendedClass1>和ArrayList<SomeExtendedClass2>三种ArrayList,甚至包括未知的接受SomeClass其他子类对象的ArrayList。我们拿到一个定义为ArrayList<? extends SomeClass>的ArrayList的时候,我们并不能确定这个ArrayList具体是使用哪个类作为参数定义的,因此编译器也无法让这段代码编译通过。举例来讲,如果我们想往这个ArrayList中放一个SomeExtendedClass2的对象,我们如何保证它实际上不是其他的如ArrayList<SomeExtendedClass1>,而就是这个ArrayList<SomeExtendedClass2>呢?(还记得吗?ArrayList<Integer>并非ArrayList<Object>的子类。)怎么办?我们需要使用泛型方法。泛型方法的定义类似下面的例子:
public static <T extends SomeClass> void add (Collection<T> c, T elem) {
c.add(elem);
}
其中T代表了我们这个方法期待的那个最终的具体的类,相关的声明必须放在方法签名中紧靠返回类型的位置之前。在本例中,它可以是SomeClass或者SomeClass的任何子类,其说明<T entends SomeClass>放在void关键字之前(只能放在这里)。这样我们就可以让编译器确信当我们试图添加一个元素到泛型的ArrayList实例中时,可以保证类型安全。
Java泛型的最大特点在于它是在语言级别实现的,区别于C# 2.0中的C
LR级别。这样的做法使得JRE可以不必做大的调整,缺点是无法支持一些运行时的类型甄别。一旦编译,它就被写死了,能提供的动态能力相当弱。
个人认为泛型是这次J2SE(TM) 5.0中引入的最重要的语言元素,给Java语言带来的影响也是最大。举个例子来讲,我们可以看到,几乎所有的Collections API都被更新成支持泛型的版本。这样做带来的好处是显而易见的,那就是减少代码重复(不需要提供多个版本的某一个类或者接口以支持不同类的对象)以及增强代码的健壮性(编译期的类型安全检查)。不过如何才能真正利用好这个特性,尤其是如何实现自己的泛型接口或类供他人使用,就并非那么显而易见了。让我们一起在使用中慢慢积累。
1.5. 增强的for循环
你是否已经厌倦了每次写for循环时都要写上那些机械的代码,尤其当你需要遍历数组或者Collection,如:(假设在Collection中储存的对象是String类型的)
public void showAll (Collection c) {
for (Iterator iter = c.iterator(); iter.hasNext(); ) {
System.out.println((String) iter.next());
}
}
public void showAll (String[] sa) {
for (int i = 0; i < sa.length; i++) {
System.out.println(sa[i]);
}
}
这样的代码不仅显得臃肿,而且容易出错,我想我们大家在刚开始接触编程时,尤其是C/C++和Java,可能多少都犯过以下类似错误的一种或几种:把for语句的三个表达式顺序弄错;第二个表达式逻辑判断不正确(漏掉一些、多出一些、甚至死循环);忘记移动游标;在循环体内不小心改变了游标的位置等等。为什么不能让编译器帮我们处理这些细节呢?在5.0中,我们可以这样写:
public void showAll (Collection c) {
for (Object obj : c) {
System.out.println((String) obj);
}
}
public void showAll (String[] sa) {
for (String str : sa) {
System.out.println(str);
}
}
这样的代码显得更加清晰和简洁,不是吗?具体的语法很简单:使用":"分隔开,前面的部分写明从数组或Collection中将要取出的类型,以及使用的临时变量的名字,后面的部分写上数组或者Collection的引用。加上泛型,我们甚至可以把第一个方法变得更加漂亮:
public void showAll (Collection<String> cs) {
for (String str : cs) {
System.out.println(str);
}
}
有没有发现:当你需要将Collection<String>替换成String[],你所需要做的仅仅是简单的把参数类型"Collection<String>"替换成"String[]",反过来也是一样,你不完全需要改其他的东西。这在J2SE(TM) 5.0之前是无法想象的。
对于这个看上去相当方便的新语言元素,当你需要在循环体中访问游标的时候,会显得很别扭:比方说,当我们处理一个链表,需要更新其中某一个元素,或者删除某个元素等等。这个时候,你无法在循环体内获得你需要的游标信息,于是需要回退到原先的做法。不过,有了泛型和增强的for循环,我们在大多数情况下已经不用去操心那些烦人的for循环的表达式和嵌套了。毕竟,我们大部分时间都不会需要去了解游标的具体位置,我们只需要遍历数组或Collection,对吧?
1.6. 自动装箱/自动拆箱
所谓装箱,就是把值类型用它们相对应的引用类型包起来,使它们可以具有对象的特质,如我们可以把int型包装成Integer类的对象,或者把double包装成Double,等等。所谓拆箱,就是跟装箱的方向相反,将Integer及Double这样的引用类型的对象重新简化为值类型的数据。
在J2SE(TM) 5.0发布之前,我们只能手工的处理装箱和拆箱。也许你会问,为什么需要装箱和拆箱?比方说当我们试图将一个值类型的数据添加到一个Collection中时,就需要先把它装箱,因为Collection的add()方法只接受对象;而当我们需要在稍后将这条数据取出来,而又希望使用它对应的值类型进行操作时,我们又需要将它拆箱成值类型的版本。现在,编译器可以帮我们自动地完成这些必要的步骤。下面的代码我提供两个版本的装箱和拆箱,一个版本使用手工的方式,另一个版本则把这些显而易见的代码交给编译器去完成:
public static void manualBoxingUnboxing(int i) {
ArrayList<Integer> aList = new ArrayList<Integer>();
aList.add(0, new Integer(i));
int a = aList.get(0).intValue();
System.out.println("The value of i is " + a);
}
public static void autoBoxingUnboxing(int i) {
ArrayList<Integer> aList = new ArrayList<Integer>();
aList.add(0, i);
int a = aList.get(0);
System.out.println("The value of i is " + a);
}
看到了吧,在J2SE(TM) 5.0中,我们不再需要显式的去将一个值类型的数据转换成相应的对象,从而把它作为对象传给其他方法,也不必手工的将那个代表一个数值的对象拆箱为相应的值类型数据,只要你提供的信息足够让编译器确信这些装箱/拆箱后的类型在使用时是合法的:比方讲,如果在上面的代码中,如果我们使用的不是ArrayList<Integer>而是ArrayList或者其他不兼容的版本如ArrayList<java.util.Date>,会有编译错误。
当然,你需要足够重视的是:一方面,对于值类型和引用类型,在资源的占用上有相当大的区别;另一方面,装箱和拆箱会带来额外的开销。在使用这一方便特性的同时,请不要忘记了背后隐藏的这些也许会影响
性能的因素。
1.7. 类型安全的枚举
在介绍J2SE(TM) 5.0中引入的类型安全枚举的用法之前,我想先简单介绍一下这一话题的背景。
我们知道,在C中,我们可以定义枚举类型来使用别名代替一个集合中的不同元素,通常是用于描述那些可以归为一类,而又具备有限数量的类别或者概念,如月份、颜色、扑克牌、太阳系的行星、五大洲、四大洋、季节、学科、四则运算符,等等。它们通常看上去是这个样子:
typedef enum {SPRING, SUMMER, AUTUMN, WINTER} season;
实质上,这些别名被处理成int常量,比如0代表SPRING,1代表SUMMER,以此类推。因为这些别名最终就是int,于是你可以对它们进行四则运算,这就造成了语意上的不明确。
原文转自:http://www.ltesting.net