第七章 Linux内核的时钟中断
(By 詹荣开,NUDT)
Copyright © 2003 by 詹荣开
E-mail:zhanrk@sohu.com
Linux-2.4.0
Version 1.0.0,2003-2-14
摘要:本文主要从内核实现的角度分析了Linux 2.4.0内核的时钟中断、内核对时间的表示等。本文是为那些想要了解Linux I/O子系统的读者和Linux驱动程序开发人员而写的。
关键词:Linux、时钟、定时器
申明:这份文档是按照自由软件开放源代码的精神发布的,任何人可以免费获得、使用和重新发布,但是你没有限制别人重新发布你发布内容的权利。发布本文的目的是希望它能对读者有用,但没有任何担保,甚至没有适合特定目的的隐含的担保。更详细的情况请参阅GNU通用公共许可证(GPL),以及GNU自由文档协议(GFDL)。
你应该已经和文档一起收到一份GNU通用公共许可证(GPL)的副本。如果还没有,写信给:
The Free Software Foundation, Inc., 675 Mass Ave, Cambridge,MA02139, USA
欢迎各位指出文档中的错误与疑问。
前言
时间在一个操作系统内核中占据着重要的地位,它是驱动一个OS内核运行的“起博器”。一般说来,内核主要需要两种类型的时间:
1.在内核运行期间持续记录当前的时间与日期,以便内核对某些对象和事件作时间标记(timestamp,也称为“时间戳”),或供用户通过时间syscall进行检索。
2.维持一个固定周期的定时器,以提醒内核或用户一段时间已经过去了。
PC机中的时间是有三种时钟硬件提供的,而这些时钟硬件又都基于固定频率的晶体振荡器来提供时钟方波信号输入。这三种时钟硬件是:(1)实时时钟(Real Time Clock,RTC);(2)可编程间隔定时器(Programmable IntervalTimer,PIT);(3)时间戳计数器(Time Stamp Counter,TSC)。
7.1 时钟硬件
7.1.1 实时时钟RTC
自从IBM PCAT起,所有的PC机就都包含了一个叫做实时时钟(RTC)的时钟芯片,以便在PC机断电后仍然能够继续保持时间。显然,RTC是通过主板上的电池来供电的,而不是通过PC机电源来供电的,因此当PC机关掉电源后,RTC仍然会继续工作。通常,CMOSRAM和RTC被集成到一块芯片上,因此RTC也称作“CMOSTimer”。最常见的RTC芯片是MC146818(Motorola)和DS12887(maxim),DS12887完全兼容于MC146818,并有一定的扩展。本节内容主要基于MC146818这一标准的RTC芯片。具体内容可以参考MC146818的Datasheet。
7.1.1.1 RTC寄存器
MC146818 RTC芯片一共有64个寄存器。它们的芯片内部地址编号为0x00~0x3F(不是I/O端口地址),这些寄存器一共可以分为三组:
(1)时钟与日历寄存器组:共有10个(0x00~0x09),表示时间、日历的具体信息。在PC机中,这些寄存器中的值都是以BCD格式来存储的(比如23dec=0x23BCD)。
(2)状态和控制寄存器组:共有4个(0x0A~0x0D),控制RTC芯片的工作方式,并表示当前的状态。
(3)CMOS配置数据:通用的CMOS RAM,它们与时间无关,因此我们不关心它。
时钟与日历寄存器组的详细解释如下:
AddressFunction
00Current second for RTC
01Alarm second
02Current minute
03Alarm minute
04Current hour
05Alarm hour
06Current day of week(01=Sunday)
07Current date of month
08Current month
09Current year(final two digits,eg:93)
状态寄存器A(地址0x0A)的格式如下:
其中:
(1)bit[7]——UIP标志(Update in Progress),为1表示RTC正在更新日历寄存器组中的值,此时日历寄存器组是不可访问的(此时访问它们将得到一个无意义的渐变值)。
(2)bit[6:4]——这三位是“除法器控制位”(divider-control bits),用来定义RTC的操作频率。各种可能的值如下:
Divider bitsTime-base frequencyDivider ResetOperation Mode
DV2DV1DV0
0004.194304 MHZNOYES
0011.048576 MHZNOYES
01032.769 KHZNOYES
110/1任何YESNO
PC机通常将Divider bits设置成“010”。
(3)bit[3:0]——速率选择位(Rate Selection bits),用于周期性或方波信号输出。
RS bits4.194304或1.048578 MHZ32.768 KHZ
RS3RS2RS1RS0周期性中断方波周期性中断方波
0000NoneNoneNoneNone
000130.517μs32.768 KHZ3.90625ms256 HZ
001061.035μs16.384 KHZ
0011122.070μs8.192KHZ
0100244.141μs4.096KHZ
0101488.281μs2.048KHZ
0110976.562μs1.024KHZ
01111.953125ms512HZ
10003.90625ms256HZ
10017.8125ms128HZ
101015.625ms64HZ
101131.25ms32HZ
110062.5ms16HZ
1101125ms8HZ
1110250ms4HZ
1111500ms2HZ
PC机BIOS对其默认的设置值是“0110”。
状态寄存器B的格式如下所示:
各位的含义如下:
(1)bit[7]——SET标志。为1表示RTC的所有更新过程都将终止,用户程序随后马上对日历寄存器组中的值进行初始化设置。为0表示将允许更新过程继续。
(2)bit[6]——PIE标志,周期性中断使能标志。
(3)bit[5]——AIE标志,告警中断使能标志。
(4)bit[4]——UIE标志,更新结束中断使能标志。
(5)bit[3]——SQWE标志,方波信号使能标志。
(6)bit[2]——DM标志,用来控制日历寄存器组的数据模式,0=BCD,1=BINARY。BIOS总是将它设置为0。
(7)bit[1]——24/12标志,用来控制hour寄存器,0表示12小时制,1表示24小时制。PC机BIOS总是将它设置为1。
(8)bit[0]——DSE标志。BIOS总是将它设置为0。
状态寄存器C的格式如下:
(1)bit[7]——IRQF标志,中断请求标志,当该位为1时,说明寄存器B中断请求发生。
(2)bit[6]——PF标志,周期性中断标志,为1表示发生周期性中断请求。
(3)bit[5]——AF标志,告警中断标志,为1表示发生告警中断请求。
(4)bit[4]——UF标志,更新结束中断标志,为1表示发生更新结束中断请求。
状态寄存器D的格式如下:
(1)bit[7]——VRT标志(Valid RAM and Time),为1表示OK,为0表示RTC已经掉电。
(2)bit[6:0]——总是为0,未定义。
7.1.1.2 通过I/O端口访问RTC
在PC机中可以通过I/O端口0x70和0x71来读写RTC芯片中的寄存器。其中,端口0x70是RTC的寄存器地址索引端口,0x71是数据端口。
读RTC芯片寄存器的步骤是:
mov al, addr
out 70h, al ; Select reg_addr in RTC chip
jmp $+2 ; a slight delay to settle thing
in al, 71h ;
写RTC寄存器的步骤如下:
mov al, addr
out 70h, al ; Select reg_addr in RTC chip
jmp $+2 ; a slight delay to settle thing
mov al, value
out 71h, al
7.1.2 可编程间隔定时器PIT
每个PC机中都有一个PIT,以通过IRQ0产生周期性的时钟中断信号。当前使用最普遍的是Intel 8254 PIT芯片,它的I/O端口地址是0x40~0x43。
Intel 8254 PIT有3个计时通道,每个通道都有其不同的用途:
(1)通道0用来负责更新系统时钟。每当一个时钟滴答过去时,它就会通过IRQ0向系统产生一次时钟中断。
(2)通道1通常用于控制DMAC对RAM的刷新。
(3)通道2被连接到PC机的扬声器,以产生方波信号。
每个通道都有一个向下减小的计数器,8254PIT的输入时钟信号的频率是1193181HZ,也即一秒钟输入1193181个clock-cycle。每输入一个clock-cycle其时间通道的计数器就向下减1,一直减到0值。因此对于通道0而言,当他的计数器减到0时,PIT就向系统产生一次时钟中断,表示一个时钟滴答已经过去了。当各通道的计数器减到0时,我们就说该通道处于“Terminal count”状态。
通道计数器的最大值是10000h,所对应的时钟中断频率是1193181/(65536)=18.2HZ,也就是说,此时一秒钟之内将产生18.2次时钟中断。
7.1.2.1 PIT的I/O端口
在i386平台上,8254芯片的各寄存器的I/O端口地址如下:
PortDescription
40hChannel 0 counter(read/write)
41hChannel 1 counter(read/write)
42hChannel 2 counter(read/write)
43hPIT control word(write only)
其中,由于通道0、1、2的计数器是一个16位寄存器,而相应的端口却都是8位的,因此读写通道计数器必须进行进行两次I/O端口读写操作,分别对应于计数器的高字节和低字节,至于是先读写高字节再读写低字节,还是先读写低字节再读写高字节,则由PIT的控制寄存器来决定。8254PIT的控制寄存器的格式如下:
(1)bit[7:6]——Select Counter,选择对那个计数器进行操作。“00”表示选择Counter0,“01”表示选择Counter 1,“10”表示选择Counter 2,“11”表示Read-BackCommand(仅对于8254,对于8253无效)。
(2)bit[5:4]——Read/Write/Latch格式位。“00”表示锁存(Latch)当前计数器的值;“01”只读写计数器的高字节(MSB);“10”只读写计数器的低字节(LSB);“11”表示先读写计数器的LSB,再读写MSB。
(3)bit[3:1]——Mode bits,控制各通道的工作模式。“000”对应Mode 0;“001”对应Mode 1;“010”对应Mode 2;“011”对应Mode 3;“100”对应Mode 4;“101”对应Mode 5。
(4)bit[0]——控制计数器的存储模式。0表示以二进制格式存储,1表示计数器中的值以BCD格式存储。
7.1.2.2 PIT通道的工作模式
PIT各通道可以工作在下列6种模式下:
1.Mode 0:当通道处于“Terminal count”状态时产生中断信号。
2.Mode 1:Hardware retriggerable one-shot。
3. Mode 2:RateGenerator。这种模式典型地被用来产生实时时钟中断。此时通道的信号输出管脚OUT初始时被设置为高电平,并以此持续到计数器的值减到1。然后在接下来的这个clock-cycle期间,OUT管脚将变为低电平,直到计数器的值减到0。当计数器的值被自动地重新加载后,OUT管脚又变成高电平,然后重复上述过程。通道0通常工作在这个模式下。
4.Mode 3:方波信号发生器。
5.Mode 4:Software triggered strobe。
6.Mode 5:Hardware triggered strobe。
7.1.2.3 锁存计数器(Latch Counter)
当控制寄存器中的bit[5:4]设置成0时,将把当前通道的计数器值锁存。此时通过I/O端口可以读到一个稳定的计数器值,因为计数器表面上已经停止向下计数(PIT芯片内部并没有停止向下计数)。NOTE!一旦发出了锁存命令,就要马上读计数器的值。
7.1.3 时间戳记数器TSC
从Pentium开始,所有的Intel 80x86 CPU就都又包含一个64位的时间戳记数器(TSC)的寄存器。该寄存器实际上是一个不断增加的计数器,它在CPU的每个时钟信号到来时加1(也即每一个clock-cycle输入CPU时,该计数器的值就加1)。
汇编指令rdtsc可以用于读取TSC的值。利用CPU的TSC,操作系统通常可以得到更为精准的时间度量。假如clock-cycle的频率是400MHZ,那么TSC就将每2.5纳秒增加一次。
7.2 Linux内核对RTC的编程
MC146818RTC芯片(或其他兼容芯片,如DS12887)可以在IRQ8上产生周期性的中断,中断的频率在2HZ~8192HZ之间。与MC146818RTC对应的设备驱动程序实现在include/linux/rtc.h和drivers/char/rtc.c文件中,对应的设备文件是/dev/rtc(major=10,minor=135,只读字符设备)。因此用户进程可以通过对她进行编程以使得当RTC到达某个特定的时间值时激活IRQ8线,从而将RTC当作一个闹钟来用。
而Linux内核对RTC的唯一用途就是把RTC用作“离线”或“后台”的时间与日期维护器。当Linux内核启动时,它从RTC中读取时间与日期的基准值。然后再运行期间内核就完全抛开RTC,从而以软件的形式维护系统的当前时间与日期,并在需要时将时间回写到RTC芯片中。
Linux在include/linux/mc146818rtc.h和include/asm-i386/mc146818rtc.h头文件中分别定义了mc146818RTC芯片各寄存器的含义以及RTC芯片在i386平台上的I/O端口操作。而通用的RTC接口则声明在include/linux/rtc.h头文件中。
7.2.1 RTC芯片的I/O端口操作
Linux在include/asm-i386/mc146818rtc.h头文件中定义了RTC芯片的I/O端口操作。端口0x70被称为“RTC端口0”,端口0x71被称为“RTC端口1”,如下所示:
#ifndef RTC_PORT
#define RTC_PORT(x)(0x70 + (x))
#define RTC_ALWAYS_BCD1/* RTC operates in binary mode */
#endif
显然,RTC_PORT(0)就是指端口0x70,RTC_PORT(1)就是指I/O端口0x71。
端口0x70被用作RTC芯片内部寄存器的地址索引端口,而端口0x71则被用作RTC芯片内部寄存器的数据端口。再读写一个RTC寄存器之前,必须先把该寄存器在RTC芯片内部的地址索引值写到端口0x70中。根据这一点,读写一个RTC寄存器的宏定义CMOS_READ()和CMOS_WRITE()如下:
#define CMOS_READ(addr) ({
outb_p((addr),RTC_PORT(0));
inb_p(RTC_PORT(1));
})
#define CMOS_WRITE(val, addr) ({
outb_p((addr),RTC_PORT(0));
outb_p((val),RTC_PORT(1));
})
#define RTC_IRQ 8
在上述宏定义中,参数addr是RTC寄存器在芯片内部的地址值,取值范围是0x00~0x3F,参数val是待写入寄存器的值。宏RTC_IRQ是指RTC芯片所连接的中断请求输入线号,通常是8。
7.2.2 对RTC寄存器的定义
Linux在include/linux/mc146818rtc.h这个头文件中定义了RTC各寄存器的含义。
(1)寄存器内部地址索引的定义
Linux内核仅使用RTC芯片的时间与日期寄存器组和控制寄存器组,地址为0x00~0x09之间的10个时间与日期寄存器的定义如下:
#define RTC_SECONDS0
#define RTC_SECONDS_ALARM1
#define RTC_MINUTES2
#define RTC_MINUTES_ALARM3
#define RTC_HOURS4
#define RTC_HOURS_ALARM5
/* RTC_*_alarm is always true if 2 MSBs are set */
# define RTC_ALARM_DONT_CARE 0xC0
#define RTC_DAY_OF_WEEK6
#define RTC_DAY_OF_MONTH7
#define RTC_MONTH8
#define RTC_YEAR9
四个控制寄存器的地址定义如下:
#define RTC_REG_A10
#define RTC_REG_B11
#define RTC_REG_C12
#define RTC_REG_D13
(2)各控制寄存器的状态位的详细定义
控制寄存器A(0x0A)主要用于选择RTC芯片的工作频率,因此也称为RTC频率选择寄存器。因此Linux用一个宏别名RTC_FREQ_SELECT来表示控制寄存器A,如下:
#define RTC_FREQ_SELECTRTC_REG_A
RTC频率寄存器中的位被分为三组:①bit[7]表示UIP标志;②bit[6:4]用于除法器的频率选择;③bit[3:0]用于速率选择。它们的定义如下:
# define RTC_UIP0x80
# define RTC_DIV_CTL0x70
/* Periodic intr. / Square wave rate select. 0=none, 1=32.8kHz,... 15=2Hz */
# define RTC_RATE_SELECT 0x0F
正如7.1.1.1节所介绍的那样,bit[6:4]有5中可能的取值,分别为除法器选择不同的工作频率或用于重置除法器,各种可能的取值如下定义所示:
/* divider control: refclock values 4.194 / 1.049 MHz / 32.768 kHz */
# define RTC_REF_CLCK_4MHZ0x00
# define RTC_REF_CLCK_1MHZ0x10
# define RTC_REF_CLCK_32KHZ0x20
/* 2 values for divider stage reset, others for "testing purposes only" */
# define RTC_DIV_RESET10x60
# define RTC_DIV_RESET20x70
寄存器B中的各位用于使能/禁止RTC的各种特性,因此控制寄存器B(0x0B)也称为“控制寄存器”,Linux用宏别名RTC_CONTROL来表示控制寄存器B,它与其中的各标志位的定义如下所示:
#define RTC_CONTROLRTC_REG_B
# define RTC_SET 0x80/* disable updates for clock setting */
# define RTC_PIE 0x40/* periodic interrupt enable */
# define RTC_AIE 0x20/* alarm interrupt enable */
# define RTC_UIE 0x10/* update-finished interrupt enable */
# define RTC_SQWE 0x08/* enable square-wave output */
# define RTC_DM_BINARY 0x04/* all time/date values are BCD if clear */
# define RTC_24H 0x02/* 24 hour mode - else hours bit 7 means pm */
# define RTC_DST_EN 0x01/* auto switch DST - works f. USA only */
寄存器C是RTC芯片的中断请求状态寄存器,Linux用宏别名RTC_INTR_FLAGS来表示寄存器C,它与其中的各标志位的定义如下所示:
#define RTC_INTR_FLAGSRTC_REG_C
/* caution - cleared by read */
# define RTC_IRQF 0x80/* any of the following 3 is active */
# define RTC_PF 0x40
# define RTC_AF 0x20
# define RTC_UF 0x10
寄存器D仅定义了其最高位bit[7],以表示RTC芯片是否有效。因此寄存器D也称为RTC的有效寄存器。Linux用宏别名RTC_VALID来表示寄存器D,如下:
#define RTC_VALIDRTC_REG_D
# define RTC_VRT 0x80/* valid RAM and time */
(3)二进制格式与BCD格式的相互转换
由于时间与日期寄存器中的值可能以BCD格式存储,也可能以二进制格式存储,因此需要定义二进制格式与BCD格式之间的相互转换宏,以方便编程。如下:
#ifndef BCD_TO_BIN
#define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)
#endif
#ifndef BIN_TO_BCD
#define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10)
#endif
7.2.3 内核对RTC的操作
如前所述,Linux内核与RTC进行互操作的时机只有两个:(1)内核在启动时从RTC中读取启动时的时间与日期;(2)内核在需要时将时间与日期回写到RTC中。为此,Linux内核在arch/i386/kernel/time.c文件中实现了函数get_cmos_time()来进行对RTC的第一种操作。显然,get_cmos_time()函数仅仅在内核启动时被调用一次。而对于第二种操作,Linux则同样在arch/i386/kernel/time.c文件中实现了函数set_rtc_mmss(),以支持向RTC中回写当前时间与日期。下面我们将来分析这二个函数的实现。
在分析get_cmos_time()函数之前,我们先来看看RTC芯片对其时间与日期寄存器组的更新原理。
(1)Update In Progress
当控制寄存器B中的SET标志位为0时,MC146818芯片每秒都会在芯片内部执行一个“更新周期”(UpdateCycle),其作用是增加秒寄存器的值,并检查秒寄存器是否溢出。如果溢出,则增加分钟寄存器的值,如此一致下去直到年寄存器。在“更新周期”期间,时间与日期寄存器组(0x00~0x09)是不可用的,此时如果读取它们的值将得到未定义的值,因为MC146818在整个更新周期期间会把时间与日期寄存器组从CPU总线上脱离,从而防止软件程序读到一个渐变的数据。
在MC146818的输入时钟频率(也即晶体增荡器的频率)为4.194304MHZ或1.048576MHZ的情况下,“更新周期”需要花费248us,而对于输入时钟频率为32.768KHZ的情况,“更新周期”需要花费1984us=1.984ms。控制寄存器A中的UIP标志位用来表示MC146818是否正处于更新周期中,当UIP从0变为1的那个时刻,就表示MC146818将在稍后马上就开更新周期。在UIP从0变到1的那个时刻与MC146818真正开始UpdateCycle的那个时刻之间时有一段时间间隔的,通常是244us。也就是说,在UIP从0变到1的244us之后,时间与日期寄存器组中的值才会真正开始改变,而在这之间的244us间隔内,它们的值并不会真正改变。如下图所示:
(2)get_cmos_time()函数
该函数只被内核的初始化例程time_init()和内核的APM模块所调用。其源码如下:
/* not static: needed by APM */
unsigned long get_cmos_time(void)
{
unsigned int year, mon, day, hour, min, sec;
int i;
/* The Linux interpretation of the CMOS clock register contents:
* When the Update-In-Progress (UIP) flag goes from 1 to 0, the
* RTC registers show the second which has precisely just started.
* Let's hope other operating systems interpret the RTC the same way.
*/
/* read RTC exactly on falling edge of update flag */
for (i = 0 ; i < 1000000 ; i++)/* may take up to 1 second... */
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (i = 0 ; i < 1000000 ; i++)/* must try at least 2.228 ms */
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
do { /* Isn't this overkill ? UIP above should guarantee consistency */
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
} while (sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
{
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
}
if ((year += 1900) < 1970)
year += 100;
return mktime(year, mon, day, hour, min, sec);
}
对该函数的注释如下:
(1)在从RTC中读取时间时,由于RTC存在UpdateCycle,因此软件发出读操作的时机是很重要的。对此,get_cmos_time()函数通过UIP标志位来解决这个问题:第一个for循环不停地读取RTC频率选择寄存器中的UIP标志位,并且只要读到UIP的值为1就马上退出这个for循环。第二个for循环同样不停地读取UIP标志位,但他只要一读到UIP的值为0就马上退出这个for循环。这两个for循环的目的就是要在软件逻辑上同步RTC的UpdateCycle,显然第二个for循环最大可能需要2.228ms(TBUC+max(TUC)=244us+1984us=2.228ms)
(2)从第二个for循环退出后,RTC的UpdateCycle已经结束。此时我们就已经把当前时间逻辑定准在RTC的当前一秒时间间隔内。也就是说,这是我们就可以开始从RTC寄存器中读取当前时间值。但是要注意,读操作应该保证在244us内完成(准确地说,读操作要在RTC的下一个更新周期开始之前完成,244us的限制是过分偏执的:-)。所以,get_cmos_time()函数接下来通过CMOS_READ()宏从RTC中依次读取秒、分钟、小时、日期、月份和年分。这里的do{}while(sec!=CMOS_READ(RTC_SECOND))循环就是用来确保上述6个读操作必须在下一个Update Cycle开始之前完成。
(3)接下来判定时间的数据格式,PC机中一般总是使用BCD格式的时间,因此需要通过BCD_TO_BIN()宏把BCD格式转换为二进制格式。
(4)接下来对年分进行修正,以将年份转换为“19XX”的格式,如果是1970以前的年份,则将其加上100。
(5)最后调用mktime()函数将当前时间与日期转换为相对于1970-01-01 00:00:00的秒数值,并将其作为函数返回值返回。
函数mktime()定义在include/linux/time.h头文件中,它用来根据Gauss算法将以year/mon/day/hour/min/sec(如1980-12-31 23:59:59)格式表示的时间转换为相对于1970-01-0100:00:00这个UNIX时间基准以来的相对秒数。其源码如下:
static inline unsigned long
mktime (unsigned int year, unsigned int mon,
unsigned int day, unsigned int hour,
unsigned int min, unsigned int sec)
{
if (0 >= (int) (mon -= 2)) {/* 1..12 -> 11,12,1..10 */
mon += 12;/* Puts Feb last since it has leap day */
year -= 1;
}
return (((
(unsigned long) (year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
(3)set_rtc_mmss()函数
该函数用来更新RTC中的时间,它仅有一个参数nowtime,是以秒数表示的当前时间,其源码如下:
static int set_rtc_mmss(unsigned long nowtime)
{
int retval = 0;
int real_seconds, real_minutes, cmos_minutes;
unsigned char save_control, save_freq_select;
/* gets recalled with irq locally disabled */
spin_lock(&rtc_lock);
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(cmos_minutes);
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
real_minutes += 30;/* correct for half hour time zone */
real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
}
CMOS_WRITE(real_seconds,RTC_SECONDS);
CMOS_WRITE(real_minutes,RTC_MINUTES);
} else {
printk(KERN_WARNING
"set_rtc_mmss: can't update from %d to %d\n",
cmos_minutes, real_minutes);
retval = -1;
}
/* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
spin_unlock(&rtc_lock);
return retval;
}
对该函数的注释如下:
(1)首先对自旋锁rtc_lock进行加锁。定义在arch/i386/kernel/time.c文件中的全局自旋锁rtc_lock用来串行化所有CPU对RTC的操作。
(2)接下来,在RTC控制寄存器中设置SET标志位,以便通知RTC软件程序随后马上将要更新它的时间与日期。为此先把RTC_CONTROL寄存器的当前值读到变量save_control中,然后再把值(save_control |RTC_SET)回写到寄存器RTC_CONTROL中。
(3)然后,通过RTC_FREQ_SELECT寄存器中bit[6:4]重启RTC芯片内部的除法器。为此,类似地先把RTC_FREQ_SELECT寄存器的当前值读到变量save_freq_select中,然后再把值(save_freq_select |RTC_DIV_RESET2)回写到RTC_FREQ_SELECT寄存器中。
(4)接着将RTC_MINUTES寄存器的当前值读到变量cmos_minutes中,并根据需要将它从BCD格式转化为二进制格式。
(5)从nowtime参数中得到当前时间的秒数和分钟数。分别保存到real_seconds和real_minutes变量。注意,这里对于半小时区的情况要修正分钟数real_minutes的值。
(6)然后,在real_minutes与RTC_MINUTES寄存器的原值cmos_minutes二者相差不超过30分钟的情况下,将real_seconds和real_minutes所表示的时间值写到RTC的秒寄存器和分钟寄存器中。当然,在回写之前要记得把二进制转换为BCD格式。
(7)最后,恢复RTC_CONTROL寄存器和RTC_FREQ_SELECT寄存器原来的值。这二者的先后次序是:先恢复RTC_CONTROL寄存器,再恢复RTC_FREQ_SELECT寄存器。然后在解除自旋锁rtc_lock后就可以返回了。
最后,需要说明的一点是,set_rtc_mmss()函数尽可能在靠近一秒时间间隔的中间位置(也即500ms处)左右被调用。此外,Linux内核对每一次成功的更新RTC时间都留下时间轨迹,它用一个系统全局变量last_rtc_update来表示内核最近一次成功地对RTC进行更新的时间(单位是秒数)。该变量定义在arch/i386/kernel/time.c文件中:
/* last time the cmos clock got updated */
static long last_rtc_update;
每一次成功地调用set_rtc_mmss()函数后,内核都会马上将last_rtc_update更新为当前时间(具体请见7.4.3节)