对于一些重要性不高但是又想要快速响应用户请求的部分数据可以考虑内存数据库来存储,同时可以定期把数据固化到磁盘。
这里图个新鲜,说说内存换时间在大数据云计算相关领域的一些应用。Spark最近很火,它的核心要数RDD了,RDD最早来源与Berkeley实验室的一篇论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》。现有的数据流系统对两种应用的处理并不高效:一是迭代式算法,这在图应用和机器学习领域很常见;二是交互式数据挖掘工具。这两种情况下,将数据保存在内存中能够极大地提高性能。这里不详细说RDD了,只是想说程序员一直是觊觎内存的读取速度的。
原文转自:http://wetest.qq.com/lab/view/102.html