软考指南:程序员数据结构笔记

发表于:2007-05-26来源:作者:点击数: 标签:
知识: 1.数据结构中对象的定义,存储的表示及操作的实现. 2.线性:线性表、栈、队列、数组、字符串(广义表不考) 树:二叉树 集合:查找,排序 图(不考) 能力: 分析,解决问题的能力 过程: ● 确定问题的数据。 ● 确定数据间的关系。 ● 确定存储结构(顺

知识:

  1.数据结构中对象的定义,存储的表示及操作的实现.

  2.线性:线性表、栈、队列、数组、字符串(广义表不考)

   树:二叉树
   集合:查找,排序
   图(不考)

能力:

  分析,解决问题的能力

过程:

  ● 确定问题的数据。
  ● 确定数据间的关系。
  ● 确定存储结构(顺序-数组、链表-指针)
  ● 确定算法
  ● 编程
  ● 算法评价(时间和空间复杂度,主要考时间复杂度)

一、数组

  1、存放于一个连续的空间

  2、一维~多维数组的地址计算方式

  已知data[0][0]的内存地址,且已知一个元素所占内存空间s求data[i][j]在内存中的地址。

   公式:(add+(i*12+j)*S)(假设此数组为data[10][12])

  注意:起始地址不是data[0][0]时候的情况。起始地址为data[-3][8]和情况;

  3、顺序表的定义

   存储表示及相关操作

  4、顺序表操作中时间复杂度估计

  5、字符串的定义(字符串就是线性表),存储表示

   模式匹配算法(简单和KMP(不考))

  6、特殊矩阵:存储方法(压缩存储(按行,按列))

   三对角:存储于一维数组
   三对角问题:已知Aij能求出在一维数组中的下标k;已知下标k求Aij。

  7、稀疏矩阵:定义,存储方式:三元组表、十字链表(属于图部分,不考)

  算法

  ● 数组中元素的原地逆置; 对换
  ● 在顺序表中搜索值为X的元素;
  ● 在有序表中搜索值为X的元素;(折半查找)
  ● 在顺序表中的第i个位置插入元素X;
  ● 在顺序表中的第i个位置删除元素X;
  ● 两个有序表的合并;算法?

  线性表数据结构定义:

   Typedef struct {
    int data[max_size];
    int len;
   }linear_list;

  ● 模式匹配
  ● 字符串相加
  ● 求子串
  ● (i,j)<=>K 注意:不同矩阵所用的公式不同;
  ● 稀疏矩阵的转置(两种方式,后种为妙)
  ● 和数组有关的算法

--------------------------------------------------------------------------------

  例程:求两个长整数之和。

  a=13056952168
  b=87081299

  数组:

  a[]:1 3 0 5 6 9 5 2 1 6 8
  b[]:8 7 0 8 1 2 9 9



  由于以上的结构不够直观(一般越是直观越容易解决) 将其改为:

  a[]:11 8 6 1 2 5 9 6 5 0 3 1 a[0]=11(位数)
  b[]: 8 9 9 2 1 8 0 7 8 0 0 0 b[0]=8
  c进位 0 1 1 0 0 1 1 1 1 0 0
  c[]:11 7 6 4 3 3 0 4 4 2 3 1 c[0]的值(C位数)由c[max_s+1]决定!

  注意:在求C前应该将C(max_s+1)位赋0.否则为随机数; 较小的整数高位赋0.

  算法:已知a,b两个长整数,结果:c=a+b;

  总共相加次数: max_s=max(a[],b[])

  程序:

  for(i=1;i<=max_s;i++) {
   k=a[i]+b[i]+c[i];
   c[i]=k%10;
   c[i+1]=k/10;
  }

  求c位数:

  if(c[max_s+1]==0)
   c[0]=max_s;
  else
   c[0]=max_s+1;

  以下代码是我编的(毕竟是初学者.不太简洁大家不要见怪!):

  /*两长整数相加*/
   #include<stdio.h>
   #include<string.h>
  #define PRIN printf("\n");

  int flag=0; /*a[0]>b[0]?1:0*/

  /* max(a[],b[]) {}*/

  change(char da[],char db[],int a[],int b[],int c[]) {
   int i;
   if(a[0]>b[0]) {
    for(i=1;i<=a[0];a[i]=da[a[0]-i]-'0',i++); /*a[0]-'0' so good!*/
    for(i=1;i<=b[0];b[i]=db[b[0]-i]-'0',i++);
    for(i=b[0]+1;i<=a[0];b[i]=0,i++);
    for(i=1;i<=a[0]+1;c[i]=0,i++);
    flag=1;
   }
   else {
    for(i=1;i<=b[0];b[i]=db[b[0]-i]-'0',i++);
    for(i=1;i<=a[0];a[i]=da[a[0]-i]-'0',i++);
    for(i=a[0]+1;i<=b[0];a[i]=0,i++);
    for(i=1;i<=b[0]+1;c[i]=0,i++);
   }
  }

  add(int a[],int b[],int c[]) {
   int i,sum;
   if(flag==1) {
    for(i=1;i<=a[0];i++) {
     sum=a[i]+b[i]+c[i];
     c[i+1]=sum/10;
     c[i]=sum%10;
    }
    if(c[a[0]+1]==0)
     c[0]=a[0];
    else
     c[0]=a[0]+1;
   }
   else {
    for(i=1;i<=b[0];i++) {
     sum=a[i]+b[i]+c[i];
     c[i+1]=sum/10;
     c[i]=sum%10;
    }
    if(c[b[0]+1]==0)
     c[0]=b[0];
    else
     c[0]=b[0]+1;
   }
  }

  void print(int m[]) {
   int i;
   for(i=m[0];i>=1;i--)
    printf("%d,",m[i]); PRIN
  }

  main(){
   int s;
   int a[20],b[20],c[20];
   char da[]={"123456789"};
   char db[]={"12344443"};
   a[0]=strlen(da);
   b[0]=strlen(db);
   printf("a[0]=%d\t",a[0]);
   printf("b[0]=%d",b[0]); PRIN


   change(da,db,a,b,c);
   printf("flag=%d\n",flag); PRIN
   printf("-----------------\n");
   if(flag==1) {
    print(a); PRIN
    s=abs(a[0]-b[0]);
    printf("+");
     for(s=s*2-1;s>0;s--)
      printf(" ");
      print(b); PRIN
   }
   else {
    s=abs(a[0]-b[0]);
    printf("+");
    for(s=s*2-1;s>0;s--)
     printf(" ");
     print(a); PRIN
     print(b); PRIN
   }
   add(a,b,c);
   printf("-----------------\n");
   print(c);
  }

时间复杂度计算:

  ● 确定基本操作
  ● 计算基本操作次数
  ● 选择T(n)
  ● lim(F(n)/T(n))=c
  ● 0(T(n))为时间复杂度

  上例子的时间复杂度为O(max_s);

--------------------------------------------------------------------------------

二:链表

  1、知识点

  ●逻辑次序与物理次序不一致存储方法;
  ●单链表的定义:术语(头结点、头指针等)
  ●注意带头结点的单链表与不带头结点的单链表区别。(程序员考试一般不考带头结点,因为稍难理解)
  ●插入、删除、遍历(p==NULL表明操作完成)等操作
  ● 循环链表:定义,存储表示,操作;
  ● 双向链表:定义,存储方法,操作;

  单链表和循环链表区别在最后一个指针域值不同。

  2、操作

  ●单链表:插入X,删除X,查找X,计算结点个数
  ●单链表的逆置(中程曾考)

  head->NULL/p->a1/p->a2/p->a3/p……an/NULL 注:p代表指针;NULL/p代表头结点
  =》 head->NULL/p->an/p->an-1/p->an-2/p……a1/NULL

  ●循环链表的操作:插入X,删除X,查找X,计算结点个数;

    用p=head->next来判断一次计算结点个数完成;

  程序段如下:

  k=0;
  do{
   k++;
   p=p->next;
  }while(p!=head->next);

  ● 双向链表
  ●多项式相加
  ● 有序链表合并

--------------------------------------------------------------------------------

  例程:已知两个字符串S,T,求S和T的最长公子串;

  1、逻辑结构:字符串
  2、存储结构:数组
  3、算法: 精化(精细化工)**老顽童注:此处“精细化工”说明好像不对!

  s="abaabcacb"
  t="abdcabcaabcda"

  当循环到s.len-1时,有两种情况:s="abaabcacb"、s="abaabcacb"
      s.len-2时,有三种情况:s="abaabcacb"、s="abaabcacb"、s="abaabcacb"
       .
       .
       .
      1 s.len种情况

  程序思路:


  tag=0 //没有找到
  for(l=s.len;l>0&&!tag;l--) {
   判断长度为l的s中的子串是否为t的子串;
   若是:tag=1;
  }

  长度为l的s的子串在s中有(s.len-l+1)个。
  子串0: 0~l-1
    1:    1~l      
    2:    2~l+1      
    3:    3~l+2
     ……
     ……
    s.len-l: s.len-l~s.len-1

  由上面可得:第j个子串为j~l+j-1。

  判断长度为l的s中的子串是否为t的子串:
  for(j=0;j<s.len-l+1&&!tag;j++){
   判断s中长度为l的第j个子串是否为t的子串;
   如果是:tag=1;
  }

  模式结构:
  tag=0;
  for(l=s.len;l>0&&tag==0;l--) {
   for(j=0;j<s.len-l+1&&!tag;j++) {
    ?? 用模式匹配方法确定s[j]~s[l+j-1]这个字符串是否为t的子串; //好好想想
     若是,tag=1;
   }
  }

  在前面笔者编了一些程序:链表,长整型数相加,三元组表转置以及一些简单的函数.其实有些算法想想是很简单,不过写起来还是需要一定耐心和C基础的,如果你自己觉得各算法都很懂了,不妨开机编编试试.或许会有一些新的发现与体会.

栈和队列

  1、知识点:

  ● 栈的定义:操作受限的线性表
  ● 特点:后进先出
  ● 栈的存储结构:顺序,链接
   / push(s,d)
  ● 栈的基本操作:
   \ pop(s)

  栈定义:

  struct {
   datatype data[max_num];
   int top;
  };

  ●队列定义

  特点:先进先出
  /入队列 in_queue(Q,x)

  ●队列的操作:

  \出队列 del_queue(Q)

  ●队列存储结构:

  链队列:

  Typedef struct node{
   Datatype data;
   Struct node *next;
  }NODE;
  Typedef struct {
   NODE *front;
   NODE *rear;
  }Queue;

  顺序队列:

  struct {
   datatype data[max_num];
   int front,rear;
  };

  问题:

  队列ó线性表
  假溢出<=循環队列
  队列满,队列空条件一样<=浪费一个存储空间

  递归

  定义:问题规模为N的解依赖于小规模问题的解。问题的求解通过小规模问题的解得到。
  包括二个步骤:


  1) 递推 6!=>5!=>4!=>3!=>2!=>1!=>0!
  2) 回归 720<=120<=24<=6 <=2 <=1 <=0

  递归工作栈实现递归的机制。

  2、有关算法:

  1) 顺序,链表结构下的出栈,入栈
  2) 循環,队列的入队列,出队列。
  3) 链队列的入队列,出队列。
  4) 表达式计算:后缀表达式 35+6/4368/+*-
          中缀表达式 (3+5)/6-4*(3+6/8)

  由于中缀比较难处理,计算机内一般先将中缀转换为后缀。
  运算:碰到操作数,不运算,碰到操符,运算其前两个操作数。
   中缀=>后缀
  5) 迷宫问题
  6) 线性链表的递归算法 一个链表=一个结点+一个链表

  int fuction(NODE *p) {
   if(p==NULL) return 0;
   else return(function(p->next));
  }

  树与二叉树

  一、 知识点:

  1. 树的定义: data_struct(D,R);

  其中:D中有一个根,把D和出度去掉,可以分成M个部分.
  D1,D2,D3,D4,D5…DM
  R1,R2,R3,R4,R5…RM
  而子树Ri形成树.

  1) 递归定义 高度

  2) 结点个数=1
   
    O    --0
 
 O    O  --1
 
O  O  O  O --2

 此树的高度为2

  2.二叉树定义:  

  结点个数>=0 .

  3. 术语:左右孩子,双亲,子树,度,高度等概念.

  4. 二叉树的性质

  ●层次为I的二叉树 I层结点 2I 个
  ●高度为H的二叉树结点 2H+1-1个
  ●H(点)=E(边)+1
  ●个数为N的完全二叉树高度为|_LOG2n_|
  ●完全二叉树结点编号:从上到下,从左到右.

i结点的双亲: |_i/2_| |_i-1/2_|    1   
i结点的左孩子: 2i 2i+1  2    3 
i结点的右孩子: 2i+1 2i+2 4  5  6  7
(根) 1为起点 0为起点       

  二叉树的存储结构:
    1) 扩展成为完全二叉树,以一维数组存储。

     A    
  B      C 
 D      E  F
G  H    I   

数组下标 0 1 2 3 4 5 6 7 8 9 10 11 12
元素 A B C D E F G H         I

    2) 双亲表示法 

数组下标 0 1 2 3 4 5 6 7 8
元素 A B C D E F G H I
双亲 -1 0 0 1 2 2 3 3 4

    3) 双亲孩子表示法

数组下标 0 1 2 3 4 5 …
元素 A B C D E F …
双亲 -1 0 0 1 2 2 …
左子 1 3 4       …
右子 2 -1 5       …


  结构:

    typedef struct {
     datatype data;
     int parent;
     int lchild;
     int rchild;
    }NODE;
    NODE tree[N]; // 生成N个结点的树

    4) 二叉链表
    5) 三叉链表
    6) 哈夫曼树

  5.二叉树的遍历

   先根 \
   中根 栈 中根遍历(左子树)根(右子树),再用相同的方法处理左子树,右子树.
   后根 /
   先,中序已知求树:先序找根,中序找确定左右子树.
   层次遍历(队列实现)

  6.线索二叉树(穿线树)

   中序线索二树树目的:利用空指针直接得到中序遍历的结果.
   手段(方法):左指针为空,指向前趋,右指针为空,指向后继.
  结点结构:

ltag Lch Data rch rtag

  Ltag=0,lch指向左孩子,ltag=1,指向前趋结点
  Rtag=0,rch指向右孩子;rtag=1,指向后继结点
  中序遍历: 1) 找最左结点(其左指针为空)
    2) 当该结点的rtag=1,该结点的rch指向的就为后继
    3) 当rtag=0,后继元素为右子树中最左边那个
  N个结点的二树有空指针N+1个
  排序查找是笔者觉得最头疼的算法了,常搞混去的啊.不知道各位学得如何,如果不错,还请告诉我一些经验!

查找

一、 知识点    /静态查找->数组  

  1、 什么是查找
          \动态查找->链树

  ●顺序查找,时间复杂度 O(n)
  ●折半查找:条件:有序;时间复杂度 O(nlog2n) (时间复杂度实际上是查找树的高度)
  ●索引查找:条件:第I+1块的所有元素都大于第I块的所有元素。

   算法:根据index来确定X所在的块(i) 时间复杂度:m/2    
      在第I块里顺序查找X      时间复杂度:n/2
   总的时间复杂度:(m+n)/2

  ●二叉排序树 1)定义:左子树键值大于根节点键值;右子树键值小于根的键值,其左右子树均为二叉排序树。 
         2)特点:中序遍历有序->(删除节点用到此性质)
         3)二叉排序树的查找:如果根大于要查找的树,则前左子树前进,如果根小于要查找的树,则向右子树前进。
         4)结点的插入->二叉排序树的构造方法
         5)结点删除(难点)  1、右子树放在左子树的最右边
                    2、左子树放在右子树的最左边

  ●avl树(二叉平衡树):左右子树高度只能差1层,即|h|<=1其子树也一样。
  ●B树:n阶B树满足以下条件 1)每个结点(除根外)包含有N~2N个关链字。                2)所有叶子节点都在同一层。
                3)B树的所有子树也是一棵B树。
   特点:降低层次数,减少比较次数。

排序

一、知识点

  1、排序的定义
         /内排序:只在内存中进行
  2、排序的分类
         \外排序:与内外存进行排序 
   内排序:   /直接插入排序
    1)插入排序
          \shell排序
          /冒泡排序
    2)交换排序 
          \快速排序
           /简单选择排序
    3)选择排序 堆
           \ 锦标赛排序
    4)归并排序(二路)
    5)基数排序(多关链字排序)

  3、时间复杂度(上午题目常考,不会求也得记住啊兄弟姐妹们!)

         * * * * * * 15 * * * 15 * * *
    /稳定   * * * * * * * * 15 15 * * * *(前后不变) 
  排序  
    \ 不稳定 * * * * * * * * 15 15 * * * *(前后改变)
  经整理得:选择、希尔、堆、快速排序是不稳定的;直接插入、冒泡、合并排序是稳定的。


  ●锦标赛排序方法: 13  16  11  18  21  3  17  6
             \  /   \  /   \  /    \ /
              13     11     3      6
              \     /      \     /
                 11           3
                  \           /
                        3(胜出,将其拿出,并令其为正无穷&Go On)

  ●归并排序方法:  13  16  11  18  21  3  17  6
             \  /   \  /   \  /   \  /
             13,16    11,18    3,21    6,17
              \     /      \     /
              11,13,16,18       3,6,17,21
                 \           /
                  3,6,11,13,16,17,18,21

  ●shell排序算法:1)定义一个步长(或者说增量)数组D[m];其中:D[m-1]=1(最后一个增量必须为1,否则可能不完全)
         2)共排m趟,其中第i趟增量为D[i],把整个序列分成D[i]个子序列,分别对这D[i]个子序列进行直接插入排序。
         程序如下: for(i=0;i<m;i++)
              {for(j=0;j<d[i];j++)
               {对第i个子序列进行直接插入排序; 
                  注意:下标之差为D[i];
               }
              }

  ●快速排序 ( smaller )data ( bigger )
   d[] i-> 13 16 11 18 21 3 17 6 24 8 <-j
   先从后往前找,再从前往后找。 
   思想:空一个插入一个,i空j挪,j空i挪(这里的i,j是指i,j两指针所指的下标)。
   一次执行算法:1)令temp=d[0](枢纽),i=0,j=n-1;
           2)奇数次时从j位置出发向前找第一个比temp小的元素,找到后放到i的位置(d[i]=d[j];i++;) i往后挪。
          3)偶数次时从i开始往后找第一个比temp大的数,(d[j]=d[i];j--;)
          4)当i=j时,结束循环。d[i]=temp;
  再用递归对左右进行快速排序,因为快速排序是一个典型的递归算法。

  ●堆排序 

    定义:d[n]满足条件:d[i]<d[2i+1]&&d[i]<d[2i+2] 大堆(上大下小)
              d[i]>d[2i+1]&&d[i]>d[2i+2] 小堆(上小下大)
    判断是否为堆应该将其转换成树的形式。总共排序n-1次

  调整(重点)
   程序: flag=0;
      while(i<=n-1) {
       if(d[i]<d[2*i+1])||(d[i]<d[2*i+2]))
       { if(d[2*i+1]>d[2*i+2]) 8 24 {d[i]<->d[2*i+1]; 24 21 -> 8 21
        i=2*i+1;
        else {
         d[i]<->d[2*i+2];
         i=2*i+2;
        }
       }
       else
        flag=1; //是堆
      }

  堆排序过程:

  ●基数排序(多关键字排序)

  扑克: 1) 大小->分配
     2) 花色->分配,收集
  思想:分配再收集.
  构建链表:链表个数根据关键字取值个数有关.
  例:将下面九个三位数排序:
    321 214 665 102 874 699 210 333 600
   定义一个有十个元素的数组:

          a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]
   第一趟(个位): 210 321 102 333 214 665         699
          600         874
       结果: 210 600 321 102 333 214 874 665 699
   第二趟(十位): 600 210 321    333    665 874    699
          102 214
       结果: 600 102 210 214 321 333 665 874 699
   第三趟(百位): 102 210 321      600    874
             214 333      665
                       699
       结果: 102 210 214 321 333 600 665 699 874(排序成功)

八大类算法

  程序员考试下午试题最后一道一般是八大类算法里头的.大家尤其要注意的是递归,因为近几年都考了,而且有的还考两题。可以说如果我们不掌握递归就没有掌握C,况且递归是C里的难点。为了控制合格率,程序员考试不会让我们轻松过关的,为了中国软件业,我想也应该这样啊。
    /数据结构(离散)
  迭代
    \数值计算(连续)
  枚举 策略好坏很重要


  递推
  递归
  回溯
  分治
  贪婪
  动态规划

  其中:递推、递归、分治、动态规划四种算法思想基本相似。都是把大问题变成小问题,但技术上有差别。

枚举:

  背包问题:
  枚举策略:1)可能的方案:2N
       2)对每一方案进行判断.

  枚举法一般流程:
    while(还有其他可能方案)
    { 按某种顺序可难方案;
     检验方案;
     if(方案为解)
      保存方案;
     }
    }

  枚举策略:
  例:把所有排列枚举出来 P6=6!.
   Min:123456
   Max:654321
   a1a2a3a4a5a6=>?(下一排列)=>?
   比如:312654的下和种情况=>314256

递归

  递归算法通常具有这样的特征:为求解规模为N的问题,设法将它分解成一些规模较小的问题,然后从这些较小问题的解能方便地构造出题目所需的解。而这些规模较小的问题也采用同样的方法分解成规模更小的问题,通过规模更小的问题构造出规模校小的问题的解,如此不断的反复分解和综合,总能分解到最简单的能直接得到解的情况。

  因此,在解递归算法的题目时,要注意以下几点:

  1) 找到递归调用的结束条件或继续递归调用条件.
  2) 想方设法将处理对象的规模缩小或元素减少.
  3) 由于递归调用可理解为并列同名函数的多次调用,而函数调用的原则是一层一层调用,一层一层返回.因此,还要注意理解调用返回后的下一个语句的作用.在一些简单的递归算法中,往往不需要考虑递调用返回后的语句处理.而在一些复杂的递归算法中,则需要考虑递归调用返回后的语句处理和进一步的递归调用.
  4) 在读递归程序或编写递归程序时,必须要牢记递归函数的作用,这样便于理解整个函数的功能和知道哪儿需要写上递归调用语句.当然,在解递归算法的题目时,也需要分清递归函数中的内部变量和外部变量.

  表现形式:

  ●定义是递归的(二叉树,二叉排序树)
  ●存储结构是递归的(二叉树,链表,数组)
  ●由前两种形式得出的算法是递归的

  一般流程: function(variable list(规模为N))
   { if(规模小,解已知) return 解;
    else {
     把问题分成若干个部分;
     某些部分可直接得到解;
     而另一部分(规模为N-1)的解递归得到;
    }
  }

  例1:求一个链表里的最大元素.

  大家有没想过这个问题用递归来做呢?
  非递归方法大家应该都会哦?
    Max(nodetype *h) {
     nodetype *p;
     nodetype *q; //存放含最大值的结点
     Int max=0;
     P=h;
     While(p!=NULL){
      if (max<p->data) {
       max=p->data;
       q=p;
      }
      p=p->next;
     }
     return q;
    }

  下面真经来了,嘻嘻嘻~~~

    *max(nodetype *h) {
     nodetype *temp;
     temp=max(h->next);
     if(h->data>temp->data)
      return h;
     else
      return temp;
    }


  大家有空想想下面这个算法:求链表所有数据的平均值(我也没试过),不许偷懒,用递归试试哦!
  递归程序员考试题目类型:1)就是链表的某些操作(比如上面的求平均值)
              2)二叉树(遍历等)

  例2.判断数组元素是否递增

     int jidge(int a[],int n) {
      if(n==1) return 1;
      else
       if(a[0]>a[1]) return 0;
       else return jidge(a+1,n-1);
     }

  例3.求二叉树的高度(根据二叉树的递归性质:(左子树)根(右子树))

     int depth(nodetype *root) {
      if(root==NULL)
       return 0;
      else {
       h1=depth(root->lch);
       h2=depth(root->rch);
       return max(h1,h2)+1;
      }
      }

  自己想想求二叉树结点个数(与上例类似)

  例4.已知中序遍历和后序遍历,求二叉树.

   设一二叉树的:

   中序 S:E D F B A G J H C I
      ^start1 ^j ^end1
   后序 T:E F D B J H G I C A
      ^start2 ^end2
    node *create(char *s,char *t, int start1,int start2,int end1,int end2)
    { if (start1>end1) return NULL; //回归条件
     root=(node *)malloc(sizeof(node));
     root->data=t[end2];
     找到S中T[end2]的位置为 j
     root->lch=create(S,T,s1,j-1,start1,j+start2-start1-1);
     root->rch=create(S,T,j+1,end1,j+start2-start1,end2-1);
     return root;
    }

  例5.组合问题

   n 个数: (1,2,3,4,…n)求从中取r个数的所有组合.
   设n=5,r=3;
   递归思想:先固定一位 5 (从另四个数当中选二个)
              5,4 (从另三个数当中选一个)
              5,4,3 (从另二个数当中选零个)
   即:n-2个数中取r-2个数的所有组合
     …
  程序:

   void combire(int n,int r) {
    for(k=n;k>=n+r-1;k--) {
     a[r]=k;
     if(r==0) 打印a数组(表示找到一个解);
     else combire(n-1,r-1);
    }
   }

回溯法:

  回溯跟递归都是程序员考试里常出现的问题,大家必须掌握!
  回溯法的有关概念:
  1) 解答树:叶子结点可能是解,对结点进行后序遍历.
  2) 搜索与回溯
  五个数中任选三个的解答树(解肯定有三层,至叶子结点):
               ROOT 虚根
        /      /    |  \  \
        1      2     3  4   5
    /  |  |  \  / | \    /\  |
    2  3  4  5 3 4 5  4 5  5
   /|\  /\ |  /\ | |
   3 4 5 4 5 5 4 5 5 5

  回溯算法实现中的技巧:栈

  要搞清回溯算法,先举一个(中序遍历二叉树的非递归算法)来说明栈在非递归中所起的作用。
      A 过程:push()->push()->push()->push()栈内结果:ABDE(E为叶子,结束进栈)
     / \   pop()   ABD(E无右孩子,出栈)
     B  C   pop()   AB(D无右孩子,出栈)
    /\     pop()   A(B有右孩子,右孩子进栈)
    D F     .      .
   / /\     .      .
   E G H    .      .
  /        .      .
  I        最后结果: EDBGFIHAC
  简单算法:
    …
   if(r!=NULL) //树不空
   { while(r!=NULL)
    { push(s,r);
     r=r->lch;   //一直向左孩子前进
    }
    while(!empty(s)) // 栈非空,出栈
    { p=pop(s);
     printf(p->data);
     p=p->rch;   //向右孩子前进
     while(p!=NULL)
     { push(s,p);
      p=p->lch; //右孩子进栈
     }
    }
   } //这就是传说中的回溯,嘻嘻……没吓着你吧


  5选3问题算法:

  思想: 进栈:搜索
  出栈:回溯
  边建树(进栈)边遍历(出栈)
  基本流程:
  太复杂了,再说我不太喜欢用WORD画图(有损形象),以后再整理!

  程序: n=5;r=3
     ……
     init(s)  //初始化栈
     push(s,1) //根进栈
     while(s.top<r-1)&&(s.data[s.top]!=n) //有孩子
      push(s,s.data[s.top]+1); //孩子入栈
     while(!empty(s))
     { if(s.top=r-1)
      判断该"解"是否为解.
      x=pop(s); //保留x,判断是否为最大值n,如果是n,则出栈
      while(x==n)
      x=pop(s);
      push(s,x+1);
      while(s.top<r-1)&&(s.data[s.top]!=n)
      push(s,s.data[s.top]+1);
     }

  背包问题: TW=20 , w[5]={6,10,7,5,8}
  解的条件:1) 该解答树的叶子结点
  2) 重量最大
  解答树如下:   ROOT
       / | | | \
          6 10   7   5  8
        / | | \  / | \  / \ |
        10 7 5 8 7 5 8 5  8 8
         | |      |
         5 8      8
  程序:
  temp_w 表示栈中重量和
  …
  init(s); //初始化栈
  i=0;
  While(w[i]>TW)
   i++;
   If(i==n) Return -1; //无解
   Else {
    Push(s,i);
    Temp_w=w[i];
    i++;
    while(i<n)&&(temp_w+w[i]<=TW)
     { push(s,i);
      temp_w+=w[i];
      i++;
    }
    max_w=0;
    while(!empty(s))
     { if(max_w<temp_w)
       max_w=temp_w;
       x=pop(s);
       temp_w-=w[x];
       x++;
       while(x<n)&&(temp_w+w[x]>TW)
        x++;
       while(x<n)
       { push(s,x);
        temp_w=temp_w+w[x];
        x++;
        while(x<n)&&(temp_w+w[x]>TW)
        x++;
       }
     }

  请大家思考:四色地图问题,比如给中国地图涂色,有四种颜色,每个省选一种颜色,相邻的省不能取同样的颜色.不许偷懒,不能选人口不多于xxxxW的"大国"哦!如果真的有一天台湾独立了,下场就是这样了,一种颜色就打发了,不过台湾的程序员们赚到了,省事!呵呵。

贪婪法:

  不求最优解,速度快(以精确度换速度)

  例:哈夫曼树,最小生成树

  装箱问题:

  有n个物品,重量分别为w[n],要把这n个物品装入载重为TW的集装箱内,需要几个集装箱?
  思想1:对n个物品排序
  拿出第1个集装箱,从大到小判断能不能放。
  2 …
  3 …
  . …
  . …

  思想2: 对n个物品排序

  用物品的重量去判断是否需要一只新箱子,如果物品重量小于本箱子所剩的载重量,则装进去,反之则取一只新箱子。


  程序:
  count=1;qw[0]=TW;
  for(i=0;i<n;i++)
  {
   k=0;
   while(k<count)&&(w[i]>qw[k])
    k++;
    if(w[i]<=qw[k])
     qw[k]=qw[k]-w[i];
     code[i]=k; //第i个物品放在第k个箱子内
    else
     {count++; //取一个新箱子
      qw[count-1]=TW-w[i];
      code[i]=count-1;
    }
  }

  用贪婪法解背包问题:

  n个物品,重量:w[n] 价值v[i]
  背包限重TW,设计一个取法使得总价值最大.
  方法:
   0  1  2  3 … n-1
   w0  w1  w2  w3 … wn-1
   v0  v1  v2  v3 … vn-1
   v0/w0  …     v(n-1)/w(n-1) 求出各个物品的"性价比"

  先按性价比从高到低进行排序

  已知:w[n],v[n],TW
  程序:
  …
  for(I=1;I<n;I++)
   d[i]=v[i]/w[i]; //求性价比
   for(I=0;I<n;I++)
   { max=-1;
    for(j=0;j<n;j++)
    { if(d[j]>max)
     { max=d[j];x=j; }
    } 
    e[i]=x;
    d[x]=0;
   }
   temp_w=0;temp_v=0;
  for(i=0;i<n;i++)
   { if(temp_w+w[e[i]]<=TW)
     temp_v=temp_v+v[e[v]];
  }


分治法:

  思想:把规模为n的问题进行分解,分解成几个小规模的问题.然后在得到小规模问题的解的基础上,通过某种方法组合成该问题的解.

  例:数轴上有n个点x[n],求距离最小的两个点.
  分:任取一点,可以把x[i]这n个点分成两个部分
  小的部分 分点 大的部分
    |_._.__.__.____._|__._._.__._.__._______._.__._._.__.___._____._|
  治:解=min{小的部分的距离最小值;
   大的部分的距离最小值;
   大的部分最小点和小的部分最大点这两点之差;}

程序员考试下午试题(模拟)

一、把一个字符串插入到另一个字符串的某个位置(指元素个数)之后

  char *insert(char *s,char *t,int position)
  { int i;
   char *target;
   if(position>strlen(t)) printf("error");
   else
   { for (i=0;i< (1) ;i++)
    { if (i<position)
     target[i]=s[i];
     else
     { if(i< (2) )
      target[i]=t[i];
      else (3) ;
     }
    }
   }
   return garget;
  }

二、辗转相除法求两个正整数的最大公约数

  int f(int a,int b)
  { if (a==b) (4) ;
   else
   { if (a>b) return f(a-b,b);
    else (5) ;
   }
  }


三、求一个链表的所有元素的平均值

  typedef struct { int num;
   float ave;
  }Back;
  typedef struct node{ float data;
   struct node *next;
  } Node;

  Back *aveage(Node *head)
  { Back *p,*q;
   p=(Back *)malloc(sizeof(Back));
   if (head==NULL)
   { p->num=0;
    p->ave=0; }
   else
   { (6) ;
    p->num=q->num+1;
    (7) ; }
   retuen p;
  }

  main()
  { Node *h; Back *p;
   h=create(); /*建立以h为头指针的链表*/
   if (h==NULL) printf("没有元素");
   else { p=aveage(h);
    printf("链表元素的均值为:%6f",p->ave);
   }
  }

四、希尔排序

  已知待排序序列data[n];希尔排序的增量序列为d[m],其中d[]序列降序排列,且d[m-1]=1。其方法是对序列进行m趟排序,在第i趟排序中,按增量d[i]把整个序列分成d[i]个子序列,并按直接插入排序的方法对每个子序列进行排序。

希尔排序的程序为:

  void shellsort(int *data,int *d,int n,int m)
  { int i,j;
   for (i=0;i<m;i++)
   for (j=0; (1) ;j++)
   shell( (2) );
  }

  void shell(int *data,int d,int num,int n)
  { int i,j,k,temp;
   for (i=1; (3) ;i++)
   { j=0;
    temp=data[j+i*d];
    while ((j<i)&&( (4) ))
    j++;
    for (k=j;k<i;k++)
     data[k+1]=data[k];
    (5) ;
    (6) }
  }

五、求树的宽度

  所谓宽度是指在二叉树的各层上,具有结点数最多的那一层上的结点总数。本算法是按层次遍历二叉树,采用一个队列q,让根结点入队列,最后出队列,若有左右子树,则左右子树根结点入队列,如此反复,直到队列为空。

  int Width(BinTree *T)
  { int front=-1,rear=-1; /* 队列初始化*/
   int flag=0,count=0,p;/*p用于指向树中层的最右边的结点,flag记录层中结点数的最大值。*/
   if(T!=Null)
   { rear++; (1) ; flag=1; p=rear;
   }
   while( (2) )
   { front++;
    T=q[front];
    if(T->lchild!=Null)
    { rear++; (3) ; count++; } //
     if(T->rchild!=Null)
     { rear++; q[rear]=T->rchild; (4) ; }
     if(front==p) /* 当前层已遍历完毕*/
     { if( (5) ) flag=count; count=0; //
      p=rear; /* p指向下一层最右边的结点*/
     }
   }
   return(flag);
  }

六、区间覆盖

  设在实数轴上有n个点(x0,x1,……,xn-2,xn-1),现在要求用长度为1的单位闭区间去覆盖这n个点,则需要多少个单位闭区间。

  int cover(float x[ ], int num)
  { float start[num],end[num];
   int i ,j ,flag, count=0;
   for (i=0;i<num;i++)
   { flag=1;
    for (j=0;j< (1) ;j++)
    { if ((start[j]>x[i])&&(end[j]-x[i]<=1)) (2) ;
     else if ( (3) ) end[j]=x[i];
     else if ((x[i]>start[j])&&(x[i]<end[j])) flag=0;
     if (flag) break;
    }
    if ( (4) )
     { end[count]=x[i]; (5); count++; }
   }
   return count-1;
  }
  start[count]=x[i]


七、围棋中的提子

  在围棋比赛中,某一方(假设为黑方)在棋盘的某个位置(i,j)下子后,有可能提取对方(白方的一串子)。以W[19][19]表示一个棋盘,若W[i][j]=0表示在位置(i,j)上没有子,W[i][j]=1表示该位置上的是黑子,W[i][j]=-1表示该位置上是白子。可以用回溯法实现提子算法。

  下列程序是黑棋(tag=1)下在(i,j)位置后判断是否可以吃掉某些白子,这些确定可以提掉的白子以一个线性表表示。

  问题相应的数据结构有:

  #define length 19 /*棋盘大小*/
  #define max_num 361 /*棋盘中点的数量*/
  struct position { int row; int col;
  }; /*棋子位置*/
  struct killed { struct position data[max_num]; int num;
  } *p; /*存储可以吃掉的棋子位置*/
  struct stack { struct position node[max_num]; int top;
  }; /*栈*/
  int w[length][length]; /*棋盘中双方的棋子分布*/
  int visited[length][length]; /*给已搜索到的棋子位置作标记,初值为0,搜索到后为1*/

  struct killed *kill(int w[length][length],int r,int c,int tag)
  { struct killed *p;
   struct position *s;
   struct stack S;
   for (i=0;i<length;i++)
   for (j=0;j<length;j++)
    (1) ;
   S.top=-1; p->num=-1;
   if (w[r-1][c]==tag*(-1)) s->row=r-1; s->col=c;
   else if (w[r+1][c]==tag*(-1)) s->row=r+1; s->col=c;
   else if (w[r][c-1]==tag*(-1)) s->row=r; s->col=c-1;
   else if (w[r][c+1]==tag*(-1)) s->row=r; s->col=c+1;
   else p->len=0; return p;
   push(S,s); visited[s->row][s->col]=1;
   flag=search(s,tag);
   while ( (2))
   { push(S,s); visited[s->row][s->col]=1;
    (3);
   }
   while (S->top>=0)
    { pop(S);
     (4);
     flag=search(s,tag);
     while (flag)
     { push(S,s);
      visit(s);
      flag=search(s);
     }
    }
  }

  void push( struct stack *S, struct position *s)
  { S->top++;
   S->node[S->top].row=s->row;
   S->node[S->top].col=s->col;
   p->num++;
   p->data[p->num].row=s->row;
   p->data[p->num].col=s->col;
  }

  void pop(struct stack *S)
  { S->top--;
  }

  struct position *gettop(struct stack *S)
  { struct position *s;
   s->row=S->data[S->top].row;
   s->row=S->data[S->top].row;
   return s;
  }

  int search(struct position *s,int tag)
  { int row,col;
   row=s->row; col=s->col;
   if (W[row+1][col]=(-1)*tag)&&(!visited[row+1][col])
   { s->row=row+1;s->col=col; return 1;}
   if (W[row-1][col]=(-1)*tag)&&(!visited[row-1][col])
   { s->row=row-1;s->col=col; return 1;}
   if (W[row][col+1]=(-1)*tag)&&(!visited[row][col+1])
   { s->row=row;s->col=col+1; return 1;}
   if (W[row][col-1]=(-1)*tag)&&(!visited[row][col-1])
   { s->row=row;s->col=col-1; return 1}
   (5);
  }

答案:

(1)strlen(s)+strlen(t) (2)position+strlen(t) (3)target[i]=s[i-strlen(t)]
(4)return a (5)return f(a,b-a)
(6)q=aveage(head->next)  (7)p->ave=(head->data+q->ave*q->num)/p->num
(1)j<d[i] (2)data,d[i],j,n (3)num+i*d<n  (4)data[j+i*d]<temp  (5)data[j]=temp
(1)q[rear]=T (2)front<p (3)q[rear]=T->lchild (4)count++ (5)flag<count
(1)count (2)(x[i]>end[j])&&(x[i]-start[j]<=1) (3)start[j]=x[i] (4)!flag (5)
(1)visited[i][j]=0 (2)flag  (3)flag=search(s,tag) (4)s=gettop(S) (5)return 0

原文转自:http://www.ltesting.net