现在回头看看第一步,你应该可以理解定义一个分析程序不是件简单事了,而且一般情况下,很难在第一次就实现符合要求的最终产品。而在你将要进行分析的数据结构上同样存在这种问题。一句话,实现过程会有很多变数,你需要不断的改动你的程序。通常我们都希望将改动次数降到最低。在一个数据仓库实现过程中,本质是要分析过程毫无差错,这也需要DBA的参与。不要死抓住你的程序设计、代码、框图,或你建立的其它什么东西不放手,要根据这种变化而不断进行调整。
4. 将管理放在首位
在分析数据源方面你做的如何呢?你是否认为清理垃圾数据的工作非常困难?并不是只有你一个人这样想,做过类似工作的人都有这种看法。在一个一般规模的机构中,作为数据仓库实现过程的一部分,会有大量的旧有数据必须进行一致性处理。所以分析数据源并花费数个小时编写转换程序将旧有数据导入数据仓库是整个数据仓库实现过程中最艰难的一部分。并且这也是整个项目中最重要的一环,可以占到整个项目周期和预算的四分之三。所以一定要小心对待。
5. 从字里行间发现问题
与用户交流是个很麻烦的事情,为什么这么说呢?因为很多用户在见到最终产品前都不知道自己想要什么样的产品。定义数据仓库应用程序是一个探索的过程,而且这个过程要反复进行。记住所谓的"业务智能"是用户自己定义的,他们按照自己的理解来处理业务流程。因此这些用户就是连接数据和业务处理过程间的桥梁。他们所要的并不是数据本身,而是隐藏在数据后面的智能性。你可以让他们讨论、思考并给出建设性的意见。但千万不要让他们解决或让他们任意想象和发表那些"有可能"的观点。最后,一定要随时留意用户得出的结论。
6. 保持领先
数据仓库看起来没有传统的OLTP模式根深蒂固,事实如此。虽然很多人投身数据仓库的开发中,但由于其框架与以前的系统大相径庭,因此在开始的一段时间数据仓库的实现看上去相当混乱。但是坚持下去是很重要的。它具有两方面重要的作用。
文章来源于领测软件测试网 https://www.ltesting.net/