• 软件测试技术
  • 软件测试博客
  • 软件测试视频
  • 开源软件测试技术
  • 软件测试论坛
  • 软件测试沙龙
  • 软件测试资料下载
  • 软件测试杂志
  • 软件测试人才招聘
    暂时没有公告

字号: | 推荐给好友 上一篇 | 下一篇

RFC2005 - Applicability Statement for IP Mobility Support

发布: 2007-6-23 14:09 | 作者:   | 来源:   | 查看: 21次 | 进入软件测试论坛讨论

领测软件测试网

   
  Network Working Group J. Solomon
Request for Comments: 2005 Motorola
Category: Standards Track October 1996

Applicability Statement for IP Mobility Support

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

As required by [RFC1264], this report discusses the applicability of
Mobile IP to provide host mobility in the Internet. In particular,
this document describes the key features of Mobile IP and shows how
the requirements for advancement to Proposed Standard RFChave been
satisfied.

1. Protocol Overview

Mobile IP provides an efficient, scalable mechanism for node mobility
within the Internet. Using Mobile IP, nodes may change their point-
of-attachment to the Internet without changing their IP address.
This allows them to maintain transport and higher-layer connections
while moving. Node mobility is realized without the need to
propagate host-specific routes throughout the Internet routing
fabric. The protocol is documented in [MIP-PROTO].

In brief, Mobile IP routing works as follows. Packets destined to a
mobile node are routed first to its home network -- a network
identified by the network prefix of the mobile node's (permanent)
home address. At the home network, the mobile node's home agent
intercepts such packets and tunnels them to the mobile node's most
recently reported care-of address. At the endpoint of the tunnel,
the inner packets are decapsulated and delivered to the mobile node.
In the reverse direction, packets sourced by mobile nodes are routed
to their destination using standard IP routing mechanisms.

Thus, Mobile IP relies on protocol tunneling to deliver packets to
mobile nodes that are away from their home network. The mobile
node's home address is hidden from routers along the path from the
home agent to the mobile node due to the presence of the tunnel. The
encapsulating packet is destined to the mobile node's care-of address

-- a topologically significant address -- to which standard IP
routing mechanisms can deliver packets.

The Mobile IP protocol defines the following:

- an authenticated registration procedure by which a mobile node
informs its home agent(s) of its care-of address(es);

- an extension to ICMP Router Discovery [RFC1256] which allows mobile
nodes to discover prospective home agents and foreign agents; and

- the rules for routing packets to and from mobile nodes, including
the specification of one mandatory tunneling mechanism ([MIP-IPinIP])
and several optional tunneling mechanisms ([MIP-MINENC] and
[RFC1701]).

2. Applicability

Mobile IP is intended to solve node mobility across changes in IP
subnet. It is just as suitable for mobility across homogeneous media
as it is for mobility across heterogeneous media. That is, Mobile IP
facilitates node movement from one Ethernet segment to another as
well as it accommodates node movement from an Ethernet segment to a
wireless LAN.

One can think of Mobile IP as solving the "macro" mobility management
problem. It is less well suited for more "micro" mobility management
applications -- for example, handoff amongst wireless transceivers,
each of which covers only a very small geographic area. In this
later situation, link-layer mechanisms for link maintenance (i.e.
link-layer handoff) might offer faster convergence and less overhead
than Mobile IP.

Mobile IP scales to handle a large number of mobile nodes in the
Internet. Without route optimization as described in [MIP-OPTIM],
however, the home agent is a potential load point when serving many
mobile nodes. When home agents become overburdened, additional home
agents can be added -- and even dynamically discovered by mobile
nodes -- using mechanisms defined in the Mobile IP documents.

Finally, it is noted that mobile nodes are assigned (home) IP
addresses largely the same way in which stationary hosts are assigned
long-term IP addresses; namely, by the authority who owns them.
Properly applied, Mobile IP allows mobile nodes to communicate using
only their home address regardless of their current location. Mobile
IP, therefore, makes no attempt to solve the problems related to
local or global, IP address, renumbering.

3. Security

Mobile IP mandates the use of cryptographically strong authentication
for all registration messages exchanged between a mobile node and its
home agent. Optionally, strong authentication can be used between
foreign agents and mobile nodes or home agents. Replay protection is
realized via one of two possible mechanisms -- timestamps or nonces.

Due to the unavailability of an Internet key management protocol,
agent discovery messages are not required to be authenticated.

All Mobile IP implementations are required to support, at a minimum,
keyed MD5 authentication with manual key distribution. Other
authentication and key distribution algorithms may be supported.

Mobile IP defines security mechanisms only for the registration
protocol. Implementations requiring privacy and/or authentication of
data packets sent to and from a mobile node should use the IP
security protocols described in RFCs 1827 and 1826 for this purpose.

4. MIB

At the time of publication of this Applicability Statement, a
Management Information Base (MIB) for Mobile IP has been written and
documented in RFC2006.

5. Implementations

Several implementations of Mobile IP are known to exist. The
following list gives the origin and a contact for several such
implementations:

Organization: Contact:

CMU Dave Johnson <dbj@cs.cmu.edu>
FTP Software Frank Kastenholz <kasten@ftp.com>
IBM Charlie Perkins <perk@watson.ibm.com>
Motorola Jim Solomon <solomon@comm.mot.com>
Nokia Gunyho Gabor <gunyho@ncsmsg07he.ntc.nokia.com>
SUN Gabriel Montenegro <gab@cali.Eng.Sun.COM>
Telxon Frank Ciotti <frankc@teleng.eng.telxon.com>

6. Implementation Experience

FTP Software hosted an interim meeting, October 23-27, 1995 in which
interoperability of several implementations was demonstrated. The
following major features of the Mobile IP protocol were tested:

1) Mobile Nodes receiving and processing Agent Advertisements.
2) Agents receiving Agent Solicitations and responding with Agent
Advertisements.
3) Mobile Nodes registering with foreign agents on foreign networks.
4) Packets being received by the mobile node after having been
tunneled by the home agent and de-tunneled by the foreign agent.
5) Packets from the mobile node being routed directly to their
destinations.
6) Mobile nodes discovering that their connectivity/subnet had
changed and re-registering at their new location.
7) Mobile nodes discovering that their current foreign agent had
rebooted and therefore re-registering with that foreign agent.
8) The required form of tunneling (IP-in-IP encapsulation
[MIP-IPinIP]) as well as the one of the optional forms of tunneling;
namely, Minimal Encapsulation [MIP-MINENC].
9) Mobile nodes de-registering upon returning to their home network.
10) Registrations being rejected for authentication failures,
including invalid authenticators as well as mismatched
identification values (replay protection).
11) TCP connections remaining open (with data flowing) while a mobile
node moved from its home network to a foreign network and then
back again to the home network.

Interoperability of at least two independent implementations was
demonstrated for all of the features listed above.

7. Summary

The co-chairs, on behalf of the working group participants, believe
that the Mobile IP working group has satisfied the requirements set
forth in [RFC1264] for the advancement of Mobile IP to Proposed
Standard RFC. Specifically, the technical specification document is
stable, a MIB has been written, the security architecture has been
set forth in accordance with IAB principles, and several independent
implementations have been demonstrated to be interoperable.

8. References

[RFC1256] Deering, S., Editor, "ICMP Router Discovery Messages", RFC
1256, September 1991.

[RFC1701] Hanks, S. et. al., "Generic Routing Encapsulation (GRE)",
RFC1701, October 1994.

[RFC1264] Hinden, R., "Internet Routing Protocol Standardization
Criteria", RFC1264, October 1991.

[MIP-IPinIP] Perkins, C., Editor, "IP Encapsulation within IP",
RFC2003, October 1996.

[MIP-OPTIM] Johnson, D., and C. Perkins, "Route Optimization in
Mobile IP", Work in Progress.

[MIP-PROTO] Perkins, C., Editor, "IP Mobility Support", RFC2002,
October 1996.

[MIP-MINENC] Perkins, C., Editor, "Minimal Encapsulation within IP",
RFC2004, October 1994.

9. Author's Address

Questions about this memo can be directed to:

Jim Solomon
Motorola Inc.
1301 E. Algonquin Rd. - Rm 2240
Schaumburg, IL 60196

Voice: +1-847-576-2753
Fax: +1-847-576-3240
EMail: solomon@comm.mot.com

延伸阅读

文章来源于领测软件测试网 https://www.ltesting.net/


关于领测软件测试网 | 领测软件测试网合作伙伴 | 广告服务 | 投稿指南 | 联系我们 | 网站地图 | 友情链接
版权所有(C) 2003-2010 TestAge(领测软件测试网)|领测国际科技(北京)有限公司|软件测试工程师培训网 All Rights Reserved
北京市海淀区中关村南大街9号北京理工科技大厦1402室 京ICP备2023014753号-2
技术支持和业务联系:info@testage.com.cn 电话:010-51297073

软件测试 | 领测国际ISTQBISTQB官网TMMiTMMi认证国际软件测试工程师认证领测软件测试网