• 软件测试技术
  • 软件测试博客
  • 软件测试视频
  • 开源软件测试技术
  • 软件测试论坛
  • 软件测试沙龙
  • 软件测试资料下载
  • 软件测试杂志
  • 软件测试人才招聘
    暂时没有公告

字号: | 推荐给好友 上一篇 | 下一篇

人脸识别技术及应用简介

发布: 2008-2-03 14:19 | 作者: 蒋遂平 | 来源: 计算机世界网 | 查看: 227次 | 进入软件测试论坛讨论

领测软件测试网 1 人脸识别的分类

  1.1 鉴别、验证和监控

  (1) 鉴别(identification):鉴别回答"这是谁?"(Who am I?) 。将给定的人脸图象与计算机中存储的N个人的图象逐个比较,输出M幅图象,这些按与给定图象的相似度从大到小排列,再由人来确定这是谁。通常,一个人在计算机中只存储一幅正面图象。

  (2) 验证(verification):验证回答"这是否为某人?"(Am who I say I am?)。将给定的人脸图象与与计算机中存储的某人的图象比较,回答给定的图象是否为某人的图象。通常,一个人在计算机中存储多幅不同角度的图象。

  (3) 监控(watch list):监控同时具有鉴别和验证,回?quot;这是否为要找的人?"(Are you looking for me?)。将未知身份的人的图象输入计算机,计算机决定这个人是否在监控名单中,如果在,还必须确定这个人的身份。

  1.2 人脸识别和人头识别

  (1) 人脸识别:输入给计算机识别的人脸图象,只包括人的脸部部分,没有背景、头发、衣服等。这时,计算机在进行真正的人脸识别。

  (2) 人头识别:输入给计算机识别的人脸图象,除了包括人的脸部有皮肤的部分外,还有部分背景、头发、衣服。这时,人脸的五官特征是次要的,头发、背景、人脸轮廓等是主要特征,一旦头发、背景等变化,识别率下降。

  1.3 自动与半自动人脸识别

  (1) 自动人脸识别:输入到计算机的图象可以是包含人脸的图象,由计算机自动检测人脸部分进行分割后,进行识别。最初人们认为人脸检测是件容易的事,后来发现人脸检测可能比人脸识别更困难(特别是在灰度图象情况下,这时没有运动信息和肤色信息可利用),人脸检测已经是一个独立的研究课题。

  (2) 半自动人脸识别:采用人工确定人脸图象中两眼各自的中心位置,计算机根据这两个位置分割人脸图象,进行识别。常用于人脸鉴别。

  2 人脸识别的性能

  2.1主要性能指标

  测量人脸识别的主要性能指标有:(1)误识率(False Accept Rate, FAR):这是将其他人误作指定人员的概率;(2)拒识率(False Reject Rate, FRR):这是将指定人员误作其它人员的概率。

  计算机在判别时采用的阈值不同,这两个指标也不同。一般情况下,误识率FAR 随阈值的增大(放宽条件)而增大,拒识率FRR 随阈值的增大而减小。因此,可以采用错误率(Equal Error Rate, ERR)作为性能指标,这是调节阈值,使这FAR和FRR两个指标相等时的FAR 或 FRR。

  2.2 影响人脸识别性能的因素及解决方法

  (1) 背景和头发:消除背景和头发,只识别脸部图象部分。

  (2) 人脸在图象平面内的平移、缩放、旋转:采用几何规范化,人脸图象经过旋转、平移、缩放后,最后得到的脸部图象为指定大小,两眼水平,两眼距离一定。

  (3) 人脸在图象平面外的偏转和俯仰:可以建立人脸的三维模型,或进行三维融合(morphing),将人脸图象恢复为正面图象。

  (4) 光源位置和强度的变化:采用直方图规范化,可以消除部分光照的影响。采用对称的从阴影恢复形状(symmteric shape from shading)技术,可以得到一个与光源位置无关的图象。

  (5) 年龄的变化:建立人脸图象的老化模型。

  (6) 表情的变化:提取对表情变化不敏感的特征,或者将人脸图象分割为各个器官的图象,分别识别后再综合判断。

  (7) 附着物(眼镜、胡须)的影响。

  (8) 照相机的变化:同一人使用不同的照相机拍摄的图象是不同的。

  3 应用情况

  在无数影视或新闻中出现过这样的场景:警方利用人脸识别技术抓住了罪犯。然而,在现实生活中,人脸识别技术的效果并不令人满意。

  美国陆军实验室在13周时间内,用270人的图象测试一个人脸识别系统,发现识别率只有 51%。这套系统在机场中进行测试时,存储了250人的图象,其中的15人在1个月内通过摄影机958次,只有455次被正确辨认,识别率只有47%。在美国一个机场开展的一项为期8周的公开测试中,使用一家公司的人脸识别系统,在4个星期出错率为53%。在另一个机场开展的一项为期90天的测试中,人脸识别系统发出的错误警报也太多。

  人脸识别技术效果不尽如人意的原因:真人的电视图像与存储在数据库中的照片在布光和角度方面有差别。目前的人脸识别技术在人处于静止状态或一小群人通过检测点时有效,因此不适合在交通流量大的机场和街道拐角处使用。人脸识别要得到广泛采用,还很有待时日。

  4 FERET人脸识别测试

  1993年,美国国防部高级研究项目署 (Advanced Research Projects Agency)和美国陆军研究实验室(Army Research Laboratory)成立了Feret(FacE REcognition Technology) 项目组,建立了feret 人脸数据库,用于评价人脸识别算法的性能。

  被测试的算法分为两种:(1) 半自动算法。这种算法需要人工指出图象中人的两眼中心的坐标;(2) 全自动算法。这种算法能够自动定位图象中的人脸,然后进行识别。

  测试时,人脸图象分为两个集合:(1) 已知身份的人的图象组成库藏集 (gallery) 或目标集(target)。(2) 输入给算法的未知身份的人的图象组成探测集 (probe)或查询集(query)。

  对于人脸鉴别,查询集合中的图象分为四种:(1) FB图象,图象与目标集合中的图象是在同日、同光照条件下拍摄。(2) fc图象:图象与目标集合中的图象是在同日、不同光照的条件下拍摄。(3) 复像I (duplicate I) :图象与目标集合中的图象是在不同日、不同照相机的条件下拍摄。(4) 复像II(duplicate II):图象与目标集合中的图象是在一年以后、不同照相机的条件下拍摄。

  测试时,被测试的算法作为服务器运行,测试统计程序作为客户运行,客户首先向服务器传输库藏集合,然后,逐幅向服务器传输查询图象,服务器接收到查询图象后,将结果返回客户。

  到1997年底为止,参加测试的算法中,对FB图象的识别率很高,库藏1196人中首选率(输出的侯选图象集合中,排在第一幅的图象与查询图象为同一人的概率)达96%;对fc图象的识别率也比较高,库藏1196人中首选率达 81%;对两个复像的识别率低,对复像 I,库藏1196人中首选率为 60%,对复像II,库藏 864人中首选率为 51%。

  测试发现的主要问题:识别算法对光照变化敏感;查询图象和目标图象相隔一年半后,识别算法的性能下降;识别算法对人脸位置变化敏感:人脸偏转角度大于15度后,性能下降;识别算法对相机敏感。

  5 FVRT人脸识别测试

  FERET测试在1997年以后。没有再进行,后来,人们组织了人脸识别厂商比赛FVRT(Face Recognition Vendor Test)。FVRT在2000年进行了第一次,在2002年进行了第二次,主要针对工业界。FRVT2002对成熟的全自动人脸识别系统进行独立的技术评价,提供评价人脸识别系统满足大规模、真实世界应用能力的性能度量

  FRVT2002由两个测试子集组成:高度计算密集(HCInt, high computational intensity)测试和中等计算密集(MCInt, medium computational intensity)测试。每个测试需要11天时间。

  HCInt 测试用于评价当前系统在极具挑战性的真实世界问题上的性能,HCInt测试必须在三个等价的高端工作站上进行。HCInt 测试拥有37437人的121589幅图象,图象由美国国务院墨西哥非移民护照档案提供,由此得到人脸识别算法在超大规模数据集合上的真实世界性能。

  MCInt 测试提供一个参与者在不同图象格式(静止或视频)和不同条件下(光照、姿态)的人脸识别性能,用于发现在HCInt 测试中没有标明的有希望的人脸识别技术。MCInt 测试仅在一台工作站上进行,

  FRVT2002的测试结果分为:鉴别、验证、监控三类。

  验证算法的性能:

  FAR 条件 识别率(1-FRR)

  0.1% 平均效果 82%

  1% 室内同日同光照 95%

  1% 室内同日不同光照 95%

  1% 室内不同日同光照 89%

  1% 护照照片、不同日 90%

  1% 室内、室外同日 54%

  鉴别算法的性能(37437人,一人一幅作为库藏,每人二幅作为查询图象):

  期望图象在结果集合中位置 识别率

  排列第一 72%

  排列在前20位 82%

  排列在前50位 87%。

  监控算法的性能(FAR=1%):

  监控表大小 识别率(1-FRR)

  25人 77%

  50人 75%

  100人 72%

  300人 70%

  400人 65%

  800人 63%

  1600人 60%

  3000人 56%

  FRVT2002结论:(1)自FRVT2000以来,室内图象的识别性能有较大提高,室外图象的识别有待提高;(2)男性比女性易于识别(男性轮廓明显,特征显著);(3)老年人比年轻人易于识别;(4)识别性能随库藏大小的对数成下降趋势;(5)采用三维融合(morphing)模型(将一个三维模型与一个非正面人脸图象拟合,校正姿势变化,将非正面图象变换为正面图象,变换后的正面图象再与其它正面图象匹配),可以提高识别率。

  6 北京科瑞奇公司人脸鉴别系统简介

  北京科瑞奇技术开发股份有限公司在2002年开发了一种人脸鉴别系统,对人脸图象进行处理,消除了照相机的影响,再对图象进行特征提取和识别。这对于人脸鉴别特别有价值,因为人脸鉴别通常使用正面照,要鉴别的人脸图象是不同时期拍摄的,使用的照相机不一样。系统可以接受时间间隔较长的照片,并能达到较高的识别率,在计算机中库藏2300人的正面照片,每人一张照片,使用相距1--7年、差别比较大的照片去查询,首选率可以达到50%,前20张输出照片中包含有与输入照片为同一人的照片的概率可达70%。

延伸阅读

文章来源于领测软件测试网 https://www.ltesting.net/

TAG: 人脸识别技术


关于领测软件测试网 | 领测软件测试网合作伙伴 | 广告服务 | 投稿指南 | 联系我们 | 网站地图 | 友情链接
版权所有(C) 2003-2010 TestAge(领测软件测试网)|领测国际科技(北京)有限公司|软件测试工程师培训网 All Rights Reserved
北京市海淀区中关村南大街9号北京理工科技大厦1402室 京ICP备2023014753号-2
技术支持和业务联系:info@testage.com.cn 电话:010-51297073

软件测试 | 领测国际ISTQBISTQB官网TMMiTMMi认证国际软件测试工程师认证领测软件测试网