Network Working Group Smoot Carl-Mitchell
Request for Comments: 1027 Texas Internet Consulting
John S. Quarterman
Texas Internet Consulting
October 1987
Using ARP to Implement Transparent Subnet Gateways
Status of this Memo
This RFCdescribes the use of the Ethernet Address Resolution
Protocol (ARP) by subnet gateways to permit hosts on the connected
subnets to communicate without being aware of the existence of
subnets, using the technique of "Proxy ARP" [6]. It is based on
RFC-950 [1], RFC-922 [2], and RFC-826 [3] and is a restricted subset
of the mechanism of RFC-925 [4]. Distribution of this memo is
unlimited.
Acknowledgment
The work described in this memo was performed while the authors were
employed by the Computer Sciences Department of the University of
Texas at Austin.
Introduction
The purpose of this memo is to describe in detail the implementation
of transparent subnet ARP gateways using the technique of Proxy ARP.
The intent is to document this widely used technique.
1. Motivation
The Ethernet at the University of Texas at Austin is a large
installation connecting over ten buildings. It currently has more
than one hundred hosts connected to it [5]. The size of the
Ethernet and the amount of traffic it handles prohibit tying it
together by use of repeaters. The use of subnets provided an
attractive alternative for separating the network into smaller
distinct units.
This is exactly the situation for which Internet subnets as
described in RFC-950 are intended. Unfortunately, many vendors had
not yet implemented subnets, and it was not practical to modify the
more than half a dozen different operating systems running on hosts
on the local networks.
Therefore a method for hiding the existence of subnets from hosts
was highly desirable. Since all the local area networks supported
ARP, an ARP-based method (commonly known as "Proxy ARP" or the "ARP
hack") was chosen. In this memo, whenever the term "subnet" occurs
the "RFC-950 subnet method" is assumed.
2. Design
2.1 Basic method
On a network that supports ARP, when host A (the source) broadcasts
an ARP request for the network address corresponding to the IP
address of host B (the target), host B will recognize the IP address
as its own and will send a point-to-point ARP reply. Host A keeps
the IP-to-network-address mapping found in the reply in a local
cache and uses it for later communication with host B.
If hosts A and B are on different physical networks, host B will not
receive the ARP broadcast request from host A and cannot respond to
it. However, if the physical network of host A is connected by a
gateway to the physical network of host B, the gateway will see the
ARP request from host A. Assuming that subnet numbers are made to
correspond to physical networks, the gateway can also tell that the
request is for a host that is on a different physical network from
the requesting host. The gateway can then respond for host B,
saying that the network address for host B is that of the gateway
itself. Host A will see this reply, cache it, and send future IP
packets for host B to the gateway. The gateway will forward such
packets to host B by the usual IP routing mechanisms. The gateway
is acting as an agent for host B, which is why this technique is
called "Proxy ARP"; we will refer to this as a transparent subnet
gateway or ARP subnet gateway.
When host B replies to traffic from host A, the same algorithm
happens in reverse: the gateway connected to the network of host B
answers the request for the network address of host A, and host B
then sends IP packets for host A to gateway. The physical networks
of host A and B need not be connected to the same gateway. All that
is necessary is that the networks be reachable from the gateway.
With this approach, all ARP subnet handling is done in the ARP
subnet gateways. No changes to the normal ARP protocol or routing
need to be made to the source and target hosts. From the host point
of view, there are no subnets, and their physical networks are
simply one big IP network. If a host has an implementation of
subnets, its network masks must be set to cover only the IP network
number, excluding the subnet bits, for the system to work properly.
2.2 Routing
As part of the implementation of subnets, it is expected that the
elements of routing tables will include network numbers including
both the IP network number and the subnet bits, as specified by the
subnet mask, where appropriate. When an ARP request is seen, the
ARP subnet gateway can determine whether it knows a route to the
target host by looking in the ordinary routing table. If attempts
to reach foreign IP networks are eliminated early (see Sanity Checks
below), only a request for an address on the local IP network will
reach this point. We will assume that the same network mask applies
to every subnet of the same IP network. The network mask of the
network interface on which the ARP request arrived can then be
applied to the target IP address to produce the network part to be
looked up in the routing table.
In 4.3BSD (and probably in other operating systems), a default route
is possible. This default route specifies an address to forward a
packet to when no other route is found. The default route must not
be used when checking for a route to the target host of an ARP
request. If the default route were used, the check would always
succeed. But the host specified by the default route is unlikely to
know about subnet routing (since it is usually an Internet gateway),
and thus packets sent to it will probably be lost. This special
case in the routing lookup method is the only implementation change
needed to the routing mechanism.
If the network interfaces on which the request was received and
through which the route to the target passes are the same, the
gateway must not reply. In this case, either the target host is on
the same physical network as the gateway (and thus the host should
reply for itself), or this gateway is not on the most direct path to
the desired network, i.e., there is another gateway on the same
physical network that is on a more direct path and the other gateway
should respond.
RFC-925 [4] describes a general mechanism for dynamic subnet routing
using Proxy ARP and routing caches in the gateways. Our technique
is restricted subset of RFC-925, in which we use static subnet
routes which are determined administratively. As a result, our
transparent subnet gateways require no new network routing table
entries nor ARP cache entries; the only tables which are affected
are the ARP caches in the host.
In our implementation, routing loops are prevented by proper
administration of the subnet routing tables in the gateways.
2.3 Multiple gateways
The simplest subnet organization to administer is a tree structure,
which cannot have loops. However, it may be desirable for
reliability or traffic accommodation to have more than one gateway
(or path) between two physical networks. ARP subnet gateways may be
used in such a situation: a requesting host will use the first ARP
response it receives, even if more than one gateway supplies one.
This may even provide a rudimentary load balancing service, since if
two gateways are otherwise similar, the one most lightly loaded is
the more likely to reply first.
More complex mechanisms could be built in the form of gateway-to-
gateway protocols, and will no doubt become necessary in networks
with large numbers of subnets and gateways, in the same way that
gateway-to-gateway protocols are generally necessary among IP
gateways.
2.4 Sanity checks
Care must be taken by the network and gateway administrators to keep
the network masks the same on all the subnet gateway machines. The
most common error is to set the network mask on a host without a
subnet implementation to include the subnet number. This causes the
host to fail to attempt to send packets to hosts not on its local
subnet. Adjusting its routing tables will not help, since it will
not know how to route to subnets.
If the IP networks of the source and target hosts of an ARP request
are different, an ARP subnet gateway implementation should not
reply. This is to prevent the ARP subnet gateway from being used to
reach foreign IP networks and thus possibly bypass security checks
provided by IP gateways.
An ARP subnet gateway implementation must not reply if the physical
networks of the source and target of an ARP request are the same.
In this case, either the target host is presumably either on the
same physical network as the source host and can answer for itself,
or the target host lies in the same direction from the gateway as
does the source host, and an ARP reply from the would cause a loop.
An ARP request for a broadcast address must elicit no reply,
regardless of the source address or physical networks involved. If
the gateway were to respond with an ARP reply in this situation, it
would be inviting the original source to send actual traffic to a
broadcast address. This could result in the "Chernobyl effect"
wherein every host on the network replies to such traffic, causing
network "meltdown".
2.5 Multiple logical subnets per physical network
The most straightforward way to assign subnet numbers is one to one
with physical networks. There are, however, circumstances in which
multiple logical subnets per physical network are quite useful. One
of the more common is when it is planned that a group of
workstations will be put on their own physical network but the
gateway to the new physical network needs to be tested first. (A
repeater might be used when the gateway was not usable). If a rule
of one subnet per physical network is enforced, the addresses of the
workstations must be changed every time the gateway is tested. If
they may be assigned addresses using a new subnet number while they
are still on the old physical network, no further address changes
are needed.
To permit multiple subnets per physical network, an ARP subnet
gateway must use the physical network interface, not the subnet
number to determine when to reply to an ARP request. That is, it
should send a proxy ARP reply only when the source network interface
differs from the target network interface. In addition, appropriate
routing table entries for these "phantom" subnets must be added to
the subnet gateway routing tables.
2.6 Broadcast addresses
There are two kinds of IP broadcast addresses: main IP directed
network broadcast and subnet broadcast. An IP network broadcast
address consists of the network number plus a well-known value in
the rest (local part) of the address. An IP subnet broadcast is
similar, except both the IP network number and the subnet number
bits are included. RFC-922 standardized the use of all ones in the
local part, but there were two conventions in use before that: all
ones and all zeros. For example, 4.2BSD used all zeros, and 4.3BSD
uses all ones. Thus there are four kinds of IP directed broadcast
addresses still currently in use on many networks.
With transparent subnetting a subnet gateway must not issue an IP
broadcast using the subnet broadcast address, e.g., 128.83.138.255.
Hosts on the physical network that receive the broadcast will not
understand such an address as a broadcast address, since they will
not have subnets enabled (or will not have subnet implementations).
In fact, 4.2BSD hosts (with or without subnet implementations) will
instead treat an address with all ones in the local part as a
specific host address and try to forward the packet. Since there is
no such target host, there will be no entry in the forwarding host's
ARP tables and it will generate an ARP request for the target host.
This presents the scenario (actually observed) of a 4.3BSD gateway
running the rwho program, which broadcasts a packet once a minute,
causing every 4.2BSD host on the local physical network to generate
an ARP request at the same time. The same problem occurs with any
subnet broadcast address, whether the local part is all zeros or all
ones.
Thus a subnet gateway in a network with hosts that do not understand
subnets must take care not to use subnet broadcast addresses:
instead it must use the IP network directed broadcast address
instead.
Finally, since many hosts running out-of-date software will still be
using (and expecting) old-style all-zeros IP network broadcast
addresses, the gateway must send its broadcast addresses out in that
form, e.g., 128.83.0.0. It might be safe to also send a duplicate
packet with all ones in the local part, e.g., 128.83.255.255. It is
not clear whether the local network broadcast address of all ones,
255.255.255.255, will cause ill effects, but it is very likely that
it will not be recognized by many hosts that are running older
software.
3. Implementation in 4.3BSD
Subnet gateways using ARP have been implemented by a number of
different people. The particular method described in this memo was
first implemented in 4.2BSD on top of retrofitted beta-test 4.3BSD
subnet code, and has since been reimplemented as an add-on to the
distributed 4.3BSD sources. The latter implementation is described
here.
Most of the new kernel code for the subnet ARP gatewaying function
is in the generic Ethernet interface module, netinet/if_ether.c. It
consists of eight lines in in_arpinput that perform a couple of
quick checks (to ensure that the facility is enabled on the source
interface and that the source and target addresses are on different
subnets), call a new routine, if_subarp, for further checks, and
then build the ARP response if all checks succeed. This code is
only reached when an ARP request is received, and does nothing if
the facility is not enabled on the source interface. Thus
performance of the gateway should be very little degraded by this
addition. (Performance of the requesting host should also be
similar to the latter case, as the only difference there is between
efficiency of the ARP cache and of the routing tables).
The routine if_subarp (about sixty lines) ensures that the source
and target addresses are on the same IP network and that the target
address is none of the four kinds of directed broadcast address. It
then attempts to find a path to the target either by finding a
network interface with the desired subnet or by looking in the
routing tables. Even if a network interface is found that leads to
the target, for a reply to be sent the ARP gateway must be enabled
on that interface and the target and source interfaces must be
different.
The file netinet/route.c has a static routing entry structure
definition added, and modifications of about eight lines are made to
the main routing table lookup routine, rtalloc, to recognize a
pointer to that structure (when passed by if_subarp) as a direction
to not use the default route in this routing check. The processor
priority level (critical section protection) around the inner
routing lookup check is changed to a higher value, as the routine
may now be called from network interface interrupts as well as from
the internal software interrupts that drive processing of IP and
other high level protocols. This raised processor priority could
conceivably slow the whole kernel somewhat if there are many routing
checks, but since the critical section is fast, the effect should be
small.
A key kernel modification is about fifteen lines added to the
routine ip_output in netinet/ip_output.c. It changes subnet
broadcast addresses in packets originating at the gateway to IP
network broadcast addresses so that hosts without subnet code (or
with their network masks set to ignore subnets) will recognize them
as broadcast addresses. This section of code is only used if the
ARP gateway is turned on for the outgoing interface, and only
affects subnet broadcast addresses.
A new routine, in_mainnetof, of about fifteen lines, is added to
netinet/in.c to return the IP network number (without subnet number)
from an IP address. It is called from if_subarp and ip_output.
Two kernel parameter files have one line added to each: net/if.h
has a definition of a bit in the network interface structure to
indicate whether subnet ARP gateways are enabled, and netinet/in.h
refers to in_mainnetof.
In addition to these approximately 110 lines of kernel source
additions, there is one user-level modification. The source to the
command ifconfig, which is used to set addresses and network masks
of network interfaces, has four lines added to allow it to turn the
subnet ARP gateway facility on or off, for each interface. This is
documented in eleven new lines in the manual entry for that command.
4. Availability
The 4.3BSD implementation is currently available by anonymous FTP
(login anonymous, password guest) from sally.utexas.edu as
pub/subarp, which is a 4.3BSD "diff -c" listing from the 4.3BSD
sources that were distributed in September 1986.
This implementation was not included in the 4.3BSD distribution
proper because U.C. Berkeley CSRG thought that that would reduce the
incentive for vendors to implement subnets per RFC-950. The authors
concur. Nonetheless, there are circumstances in which the use of
transparent subnet ARP gateways is indispensable.
References
1. Mogul, J., and J. Postel, "Internet Standard Subnetting
Procedure", RFC-950, Stanford University and USC/Information
Sciences Institute, August 1985.
2. Mogul, J., "Broadcasting Internet Datagrams in the Presence of
Subnets", RFC-922, Computer Science Department, Stanford
University, October 1984.
3. Plummer, D., "An Ethernet Address Resolution Protocol or
Converting Network Protocol Addresses to 48-bit Ethernet
Addresses for Transmission on Ethernet Hardware", RFC-826,
Symbolics, November 1982.
4. Postel, J., "Multi-LAN Address Resolution", RFC-925,
USC/Information Sciences Institute, October 1984.
5. Carl-Mitchell, S., and J. S. Quarterman, "Nameservers in a Campus
Domain", SIGCUE Outlook, Vol.19, No.1/2, pp.78-88, ACM SIG
Computer Uses in Education, P.O. Box 64145, Baltimore, MD 21264,
Spring/Summer 1986.
6. Braden, R., and J. Postel, "Requirements for Internet Gateways",
RFC-1009, USC/Information Sciences Institute, June 1987.
文章来源于领测软件测试网 https://www.ltesting.net/
版权所有(C) 2003-2010 TestAge(领测软件测试网)|领测国际科技(北京)有限公司|软件测试工程师培训网 All Rights Reserved
北京市海淀区中关村南大街9号北京理工科技大厦1402室 京ICP备10010545号-5
技术支持和业务联系:info@testage.com.cn 电话:010-51297073