• 软件测试技术
  • 软件测试博客
  • 软件测试视频
  • 开源软件测试技术
  • 软件测试论坛
  • 软件测试沙龙
  • 软件测试资料下载
  • 软件测试杂志
  • 软件测试人才招聘
    暂时没有公告

字号: | 推荐给好友 上一篇 | 下一篇

RFC2245 - Anonymous SASL Mechanism

发布: 2007-6-23 14:09 | 作者:   | 来源:   | 查看: 13次 | 进入软件测试论坛讨论

领测软件测试网

   
  Network Working Group C. Newman
Request for Comments: 2245 Innosoft
Category: Standards Track November 1997

Anonymous SASL Mechanism

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1997). All Rights Reserved.

Abstract

It is common practice on the Internet to permit anonymous access to
various services. Traditionally, this has been done with a plain
text password mechanism using "anonymous" as the user name and
optional trace information, such as an email address, as the
password. As plaintext login commands are not permitted in new IETF
protocols, a new way to provide anonymous login is needed within the
context of the SASL [SASL] framework.

1. Conventions Used in this Document

The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
in this document are to be interpreted as defined in "Key words for
use in RFCs to Indicate Requirement Levels" [KEYWORDS].

2. Anonymous SASL mechanism

The mechanism name associated with anonymous access is "ANONYMOUS".
The mechanism consists of a single message from the client to the
server. The client sends optional trace information in the form of a
human readable string. The trace information should take one of
three forms: an Internet email address, an opaque string which does
not contain the '@' character and can be interpreted by the system
administrator of the client's domain, or nothing. For privacy
reasons, an Internet email address should only be used with
permission from the user.

A server which permits anonymous access will announce support for the
ANONYMOUS mechanism, and allow anyone to log in using that mechanism,
usually with restricted access.

The formal grammar for the client message using Augmented BNF [ABNF]
follows.

message = [email / token]

TCHAR = %x20-3F / %x41-7E
;; any printable US-ASCII character except '@'

email = addr-spec
;; as defined in [IMAIL], except with no free
;; insertion of linear-white-space, and the
;; local-part MUST either be entirely enclosed in
;; quotes or entirely unquoted

token = 1*255TCHAR

3. Example

Here is a sample anonymous login between an IMAP client and server.
In this example, "C:" and "S:" indicate lines sent by the client and
server respectively. If such lines are wrapped without a new "C:" or
"S:" label, then the wrapping is for editorial clarity and is not
part of the command.

Note that this example uses the IMAP profile [IMAP4] of SASL. The
base64 encoding of challenges and responses, as well as the "+ "
preceding the responses are part of the IMAP4 profile, not part of
SASL itself. Newer profiles of SASL will include the client message
with the AUTHENTICATE command itself so the extra round trip below
(the server response with an empty "+ ") can be eliminated.

In this example, the user's opaque identification token is "sirhc".

S: * OK IMAP4 server ready
C: A001 CAPABILITY
S: * CAPABILITY IMAP4 IMAP4rev1 AUTH=CRAM-MD5 AUTH=ANONYMOUS
S: A001 OK done
C: A002 AUTHENTICATE ANONYMOUS
S: +
C: c2lyaGM=
S: A003 OK Welcome, trace information has been logged.

4. Security Considerations

The anonymous mechanism grants access to information by anyone. For
this reason it should be disabled by default so the administrator can
make an explicit decision to enable it.

If the anonymous user has any write privileges, a denial of service
attack is possible by filling up all available space. This can be
prevented by disabling all write access by anonymous users.

If anonymous users have read and write access to the same area, the
server can be used as a communication mechanism to anonymously
exchange information. Servers which accept anonymous submissions
should implement the common "drop box" model which forbids anonymous
read access to the area where anonymous submissions are accepted.

If the anonymous user can run many expensive operations (e.g., an
IMAP SEARCH BODY command), this could enable a denial of service
attack. Servers are encouraged to limit the number of anonymous
users and reduce their priority or limit their resource usage.

If there is no idle timeout for the anonymous user and there is a
limit on the number of anonymous users, a denial of service attack is
enabled. Servers should implement an idle timeout for anonymous
users.

The trace information is not authenticated so it can be falsified.
This can be used as an attempt to get someone else in trouble for
access to questionable information. Administrators trying to trace
abuse need to realize this information may be falsified.

A client which uses the user's correct email address as trace
information without explicit permission may violate that user's
privacy. Information about who accesses an anonymous archive on a
sensitive subject (e.g., sexual abuse) has strong privacy needs.
Clients should not send the email address without explicit permission
of the user and should offer the option of supplying no trace token
-- thus only exposing the source IP address and time. Anonymous
proxy servers could enhance this privacy, but would have to consider
the resulting potential denial of service attacks.

Anonymous connections are susceptible to man in the middle attacks
which view or alter the data transferred. Clients and servers are
encouraged to support external integrity and encryption mechanisms.

Protocols which fail to require an explicit anonymous login are more
susceptible to break-ins given certain common implementation
techniques. Specifically, Unix servers which offer user login may

initially start up as root and switch to the appropriate user id
after an explicit login command. Normally such servers refuse all
data access commands prior to explicit login and may enter a
restricted security environment (e.g., the Unix chroot function) for
anonymous users. If anonymous access is not explicitly requested,
the entire data access machinery is exposed to external security
attacks without the chance for explicit protective measures.
Protocols which offer restricted data access should not allow
anonymous data access without an explicit login step.

5. References

[ABNF] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC2234, November 1997.

[IMAIL] Crocker, D., "Standard for the Format of Arpa Internet Text
Messages", STD 11, RFC822, August 1982.

[IMAP4] Crispin, M., "Internet Message Access Protocol - Version
4rev1", RFC2060, December 1996.

[KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", RFC2119, March 1997.

[SASL] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC2222, October 1997.

6. Author's Address

Chris Newman
Innosoft International, Inc.
1050 Lakes Drive
West Covina, CA 91790 USA

Email: chris.newman@innosoft.com

7. Full Copyright Statement

Copyright (C) The Internet Society (1997). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

延伸阅读

文章来源于领测软件测试网 https://www.ltesting.net/


关于领测软件测试网 | 领测软件测试网合作伙伴 | 广告服务 | 投稿指南 | 联系我们 | 网站地图 | 友情链接
版权所有(C) 2003-2010 TestAge(领测软件测试网)|领测国际科技(北京)有限公司|软件测试工程师培训网 All Rights Reserved
北京市海淀区中关村南大街9号北京理工科技大厦1402室 京ICP备2023014753号-2
技术支持和业务联系:info@testage.com.cn 电话:010-51297073

软件测试 | 领测国际ISTQBISTQB官网TMMiTMMi认证国际软件测试工程师认证领测软件测试网