• 软件测试技术
  • 软件测试博客
  • 软件测试视频
  • 开源软件测试技术
  • 软件测试论坛
  • 软件测试沙龙
  • 软件测试资料下载
  • 软件测试杂志
  • 软件测试人才招聘
    暂时没有公告

字号: | 推荐给好友 上一篇 | 下一篇

分析内核对gzip压缩文件进行解压的方法

发布: 2007-7-04 12:06 | 作者: admin | 来源:  网友评论 | 查看: 36次 | 进入软件测试论坛讨论

领测软件测试网
  作者:opera
  概述
  ----
  1) Linux的初始内核映象以gzip压缩文件的格式存放在zImage或bzImage之中, 内核的自举
  代码将它解压到1M内存开始处. 在内核初始化时, 如果加载了压缩的initrd映象, 内核会将解压到内存盘中, 这两处解压过程都使用了lib/inflate.c文件.
  2) inflate.c是从gzip源程序中分离出来的, 包含了一些对全局数据的直接引用, 在使用时
  需要直接嵌入到代码中. gzip压缩文件时总是在前32K字节的范围内寻找重复的字符串进行
  编码, 在解压时需要一个至少为32K字节的解压缓冲区, 它定义为window[WSIZE].
  inflate.c使用get_byte()读取输入文件, 它被定义成宏来提高效率. 输入缓冲区指针必须
  定义为inptr, inflate.c中对之有减量操作. inflate.c调用flush_window()来输出window
  缓冲区中的解压出的字节串, 每次输出长度用outcnt变量表示. 在flush_window()中, 还必
  须对输出字节串计算CRC并且刷新crc变量. 在调用gunzip()开始解压之前, 调用makecrc()
  初始化CRC计算表. 最后gunzip()返回0表示解压成功.
  3) zImage或bzImage由16位引导代码和32位内核自解压映象两个部分组成. 对于zImage, 内
  核自解压映象被加载到物理地址0x1000, 内核被解压到1M的部位. 对于bzImage, 内核自解
  压映象被加载到1M开始的地方, 内核被解压为两个片段, 一个起始于物理地址0x2000-0x90000,
  另一个起始于高端解压映象之后, 离1M开始处不小于低端片段最大长度的区域. 解压完成后,
  这两个片段被合并到1M的起始位置.
  解压根内存盘映象文件的代码
  --------------------------
  代码:
  ; drivers/block/rd.c
  #ifdef BUILD_CRAMDISK
  /*
  * gzip declarations
  */
  #define OF(args) args ; 用于函数原型声明的宏
  #ifndef memzero
  #define memzero(s, n) memset ((s), 0, (n))
  #endif
  typedef unsigned char uch; 定义inflate.c所使用的3种数据类型
  typedef unsigned short ush;
  typedef unsigned long ulg;
  #define INBUFSIZ 4096 用户输入缓冲区尺寸
  #define WSIZE 0x8000 /* window size--must be a power of two, and */
   /* at least 32K for zip's deflate method */
  
  static uch *inbuf; 用户输入缓冲区,与inflate.c无关
  static uch *window; 解压窗口
  static unsigned insize; /* valid bytes in inbuf */
  static unsigned inptr; /* index of next byte to be processed in inbuf */
  static unsigned outcnt; /* bytes in output buffer */
  static int exit_code;
  static long bytes_out; 总解压输出长度,与inflate.c无关
  static struct file *crd_infp, *crd_outfp;
  #define get_byte() (inptr < insize ? inbuf[inptr++] : fill_inbuf()) 读取输入缓冲区中一个字节
  /* Diagnostic functions (stubbed out) */ 一些调试宏
  #define Assert(cond,msg)
  #define Trace(x)
  #define Tracev(x)
  #define Tracevv(x)
  #define Tracec(c,x)
  #define Tracecv(c,x)
  #define STATIC static
  static int fill_inbuf(void);
  static void flush_window(void);
  static void *malloc(int size);
  static void free(void *where);
  static void error(char *m);
  static void gzip_mark(void **);
  static void gzip_release(void **);
  #include "../../lib/inflate.c"
  static void __init *malloc(int size)
  {
   return kmalloc(size, GFP_KERNEL);
  }
  static void __init free(void *where)
  {
   kfree(where);
  }
  static void __init gzip_mark(void **ptr)
  {
   ; 读取用户一个标记
  }
  static void __init gzip_release(void **ptr)
  {
   ; 归还用户标记
  }
  /* ===========================================================================
  * Fill the input buffer. This is called only when the buffer is empty
  * and at least one byte is really needed.
  */
  static int __init fill_inbuf(void) 填充输入缓冲区
  {
   if (exit_code) return -1;
   insize = crd_infp->f_op->read(crd_infp, inbuf, INBUFSIZ,
   &crd_infp->f_pos);
   if (insize == 0) return -1;
   inptr = 1;
   return inbuf[0];
  }
  
  /* ===========================================================================
  * Write the output window window[0..outcnt-1] and update crc and bytes_out.
  * (Used for the decompressed data only.)
  */
  static void __init flush_window(void) 输出window缓冲区中outcnt个字节串
  {
   ulg c = crc; /* temporary variable */
   unsigned n;
   uch *in, ch;
   crd_outfp->f_op->write(crd_outfp, window, outcnt, &crd_outfp->f_pos);
   in = window;
   for (n = 0; n < outcnt; n++) {
   ch = *in++;
   c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8); 计算输出串的CRC
   }
   crc = c;
   bytes_out += (ulg)outcnt; 刷新总字节数
   outcnt = 0;
  }
  static void __init error(char *x) 解压出错调用的函数
  {
   printk(KERN_ERR "%s", x);
   exit_code = 1;
  }
  static int __init
  crd_load(struct file * fp, struct file *outfp)
  {
   int result;
   insize = 0; /* valid bytes in inbuf */
   inptr = 0; /* index of next byte to be processed in inbuf */
   outcnt = 0; /* bytes in output buffer */
   exit_code = 0;
   bytes_out = 0;
   crc = (ulg)0xffffffffL; /* shift register contents */
   crd_infp = fp;
   crd_outfp = outfp;
   inbuf = kmalloc(INBUFSIZ, GFP_KERNEL);
   if (inbuf == 0) {
   printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n");
   return -1;
   }
   window = kmalloc(WSIZE, GFP_KERNEL);
   if (window == 0) {
   printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n");
   kfree(inbuf);
   return -1;
   }
   makecrc();
   result = gunzip();
   kfree(inbuf);
   kfree(window);
   return result;
  }
  #endif /* BUILD_CRAMDISK */
  32位内核自解压代码
  ------------------
  ; arch/i386/boot/compressed/head.S
  .text
  #include
  #include
   .globl startup_32 对于zImage该入口地址为0x1000; 对于bzImage为0x101000
  startup_32:
   cld
   cli
   movl $(__KERNEL_DS),%eax
   movl %eax,%ds
   movl %eax,%es
   movl %eax,%fs
   movl %eax,%gs
   lss SYMBOL_NAME(stack_start),%esp # 自解压代码的堆栈为misc.c中定义的16K字节的数组
   xorl %eax,%eax
  1: incl %eax # check that A20 really IS enabled
   movl %eax,0x000000 # loop forever if it isn't
   cmpl %eax,0x100000
   je 1b
  /*
  * Initialize eflags. Some BIOS's leave bits like NT set. This would
  * confuse the debugger if this code is traced.
  * XXX - best to initialize before switching to protected mode.
  */
   pushl $0
   popfl
  /*
  * Clear BSS 清除解压程序的BSS段
  */
   xorl %eax,%eax
   movl $ SYMBOL_NAME(_edata),%edi
   movl $ SYMBOL_NAME(_end),%ecx
   subl %edi,%ecx
   cld
   rep
   stosb
  /*
  * Do the decompression, and jump to the new kernel..
  */
   subl $16,%esp # place for structure on the stack
   movl %esp,%eax
   pushl %esi # real mode pointer as second arg
   pushl %eax # address of structure as first arg
   call SYMBOL_NAME(decompress_kernel)
   orl %eax,%eax # 如果返回非零,则表示为内核解压为低端和高端的两个片断
   jnz 3f
   popl %esi # discard address
   popl %esi # real mode pointer
   xorl %ebx,%ebx
   ljmp $(__KERNEL_CS), $0x100000 # 运行start_kernel
  /*
  * We come here, if we were loaded high.
  * We need to move the move-in-place routine down to 0x1000
  * and then start it with the buffer addresses in registers,
  * which we got from the stack.
  */
  3:
   movl $move_routine_start,%esi
   movl $0x1000,%edi
   movl $move_routine_end,%ecx
   subl %esi,%ecx
   addl $3,%ecx
   shrl $2,%ecx # 按字取整
   cld
   rep
   movsl # 将内核片断合并代码复制到0x1000区域, 内核的片段起始为0x2000
   popl %esi # discard the address
   popl %ebx # real mode pointer
   popl %esi # low_buffer_start 内核低端片段的起始地址
   popl %ecx # lcount 内核低端片段的字节数量
   popl %edx # high_buffer_start 内核高端片段的起始地址
   popl %eax # hcount 内核高端片段的字节数量
   movl $0x100000,%edi 内核合并的起始地址
   cli # make sure we don't get interrupted
   ljmp $(__KERNEL_CS), $0x1000 # and jump to the move routine
  /*
  * Routine (template) for moving the decompressed kernel in place,
  * if we were high loaded. This _must_ PIC-code !
  */
  move_routine_start:
   movl %ecx,%ebp
   shrl $2,%ecx
   rep
   movsl # 按字拷贝第1个片段
   movl %ebp,%ecx
   andl $3,%ecx
   rep
   movsb # 传送不完全字
   movl %edx,%esi
   movl %eax,%ecx # NOTE: rep movsb won't move if %ecx == 0
   addl $3,%ecx
   shrl $2,%ecx # 按字对齐
   rep
   movsl # 按字拷贝第2个片段
   movl %ebx,%esi # Restore setup pointer
   xorl %ebx,%ebx
   ljmp $(__KERNEL_CS), $0x100000 # 运行start_kernel
  move_routine_end:
  ; arch/i386/boot/compressed/misc.c
  /*
  * gzip declarations
  */
  #define OF(args) args
  #define STATIC static
  #undef memset
  #undef memcpy
  #define memzero(s, n) memset ((s), 0, (n))
  typedef unsigned char uch;
  typedef unsigned short ush;
  typedef unsigned long ulg;
  #define WSIZE 0x8000 /* Window size must be at least 32k, */
   /* and a power of two */
  static uch *inbuf; /* input buffer */
  static uch window[WSIZE]; /* Sliding window buffer */
  static unsigned insize = 0; /* valid bytes in inbuf */
  static unsigned inptr = 0; /* index of next byte to be processed in inbuf */
  static unsigned outcnt = 0; /* bytes in output buffer */
  /* gzip flag byte */
  #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
  #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
  #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
  #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
  #define COMMENT 0x10 /* bit 4 set: file comment present */
  #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
  #define RESERVED 0xC0 /* bit 6,7: reserved */
  #define get_byte() (inptr < insize ? inbuf[inptr++] : fill_inbuf())
  /* Diagnostic functions */
  #ifdef DEBUG
  # define Assert(cond,msg) {if(!(cond)) error(msg);}
  # define Trace(x) fprintf x
  # define Tracev(x) {if (verbose) fprintf x ;}
  # define Tracevv(x) {if (verbose>1) fprintf x ;}
  # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
  # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
  #else
  # define Assert(cond,msg)
  # define Trace(x)
  # define Tracev(x)
  # define Tracevv(x)
  # define Tracec(c,x)
  # define Tracecv(c,x)
  #endif
  static int fill_inbuf(void);
  static void flush_window(void);
  static void error(char *m);
  static void gzip_mark(void **);
  static void gzip_release(void **);
  /*
  * This is set up by the setup-routine at boot-time
  */
  static unsigned char *real_mode; /* Pointer to real-mode data */
  #define EXT_MEM_K (*(unsigned short *)(real_mode + 0x2))
  #ifndef STANDARD_MEMORY_BIOS_CALL
  #define ALT_MEM_K (*(unsigned long *)(real_mode + 0x1e0))
  #endif
  #define SCREEN_INFO (*(struct screen_info *)(real_mode+0))
  extern char input_data[];
  extern int input_len;
  static long bytes_out = 0;
  static uch *output_data;
  static unsigned long output_ptr = 0;
  static void *malloc(int size);
  static void free(void *where);
  static void error(char *m);
  static void gzip_mark(void **);
  static void gzip_release(void **);
  static void puts(const char *);
  extern int end;
  static long free_mem_ptr = (long)&end;
  static long free_mem_end_ptr;
  #define INPLACE_MOVE_ROUTINE 0x1000 内核片段合并代码的运行地址
  #define LOW_BUFFER_START 0x2000 内核低端解压片段的起始地址
  #define LOW_BUFFER_MAX 0x90000 内核低端解压片段的终止地址
  #define HEAP_SIZE 0x3000 为解压低码保留的堆的尺寸,堆起始于BSS的结束
  static unsigned int low_buffer_end, low_buffer_size;
  static int high_loaded =0;
  static uch *high_buffer_start /* = (uch *)(((ulg)&end) + HEAP_SIZE)*/;
  static char *vidmem = (char *)0xb8000;
  static int vidport;
  static int lines, cols;
  #include "../../../../lib/inflate.c"
  static void *malloc(int size)
  {
   void *p;
   if (size <0) error("Malloc error\n");
   if (free_mem_ptr <= 0) error("Memory error\n");
   free_mem_ptr = (free_mem_ptr + 3) & ~3; /* Align */
   p = (void *)free_mem_ptr;
   free_mem_ptr += size;
   if (free_mem_ptr >= free_mem_end_ptr)
   error("\nOut of memory\n");
   return p;
  }
  static void free(void *where)
  { /* Don't care */
  }
  static void gzip_mark(void **ptr)
  {
   *ptr = (void *) free_mem_ptr;
  }
  static void gzip_release(void **ptr)
  {
   free_mem_ptr = (long) *ptr;
  }
  static void scroll(void)
  {
   int i;
   memcpy ( vidmem, vidmem + cols * 2, ( lines - 1 ) * cols * 2 );
   for ( i = ( lines - 1 ) * cols * 2; i < lines * cols * 2; i += 2 )
   vidmem[ i ] = ' ';
  }
  static void puts(const char *s)
  {
   int x,y,pos;
   char c;
   x = SCREEN_INFO.orig_x;
   y = SCREEN_INFO.orig_y;
  
   while ( ( c = *s++ ) != '\0' ) {
   if ( c == '\n' ) {
   x = 0;
   if ( ++y >= lines ) {
   scroll();
   y--;
   }
   } else {
   vidmem [ ( x + cols * y ) * 2 ] = c;
   if ( ++x >= cols ) {
   x = 0;
   if ( ++y >= lines ) {
   scroll();
   y--;
   }
   }
   }
   }
   SCREEN_INFO.orig_x = x;
   SCREEN_INFO.orig_y = y;
   pos = (x + cols * y) * 2; /* Update cursor position */
   outb_p(14, vidport);
   outb_p(0xff & (pos >> 9), vidport+1);
   outb_p(15, vidport);
   outb_p(0xff & (pos >> 1), vidport+1);
  }
  void* memset(void* s, int c, size_t n)
  {
   int i;
   char *ss = (char*)s;
   for (i=0;i return s;
  }
  void* memcpy(void* __dest, __const void* __src,
   size_t __n)
  {
   int i;
   char *d = (char *)__dest, *s = (char *)__src;
   for (i=0;i<__n;i++) d[ i ] = s[ i ];
   return __dest;
  }
  /* ===========================================================================
  * Fill the input buffer. This is called only when the buffer is empty
  * and at least one byte is really needed.
  */
  static int fill_inbuf(void)
  {
   if (insize != 0) {
   error("ran out of input data\n");
   }
   inbuf = input_data;
   insize = input_len;
   inptr = 1;
   return inbuf[0];
  }
  /* ===========================================================================
  * Write the output window window[0..outcnt-1] and update crc and bytes_out.
  * (Used for the decompressed data only.)
  */
  static void flush_window_low(void)
  {
   ulg c = crc; /* temporary variable */
   unsigned n;
   uch *in, *out, ch;
  
   in = window;
   out = &output_data[output_ptr];
   for (n = 0; n < outcnt; n++) {
   ch = *out++ = *in++;
   c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
   }
   crc = c;
   bytes_out += (ulg)outcnt;
   output_ptr += (ulg)outcnt;
   outcnt = 0;
  }
  static void flush_window_high(void)
  {
   ulg c = crc; /* temporary variable */
   unsigned n;
   uch *in, ch;
   in = window;
   for (n = 0; n < outcnt; n++) {
   ch = *output_data++ = *in++;
   if ((ulg)output_data == low_buffer_end) output_data=high_buffer_start;
   c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
   }
   crc = c;
   bytes_out += (ulg)outcnt;
   outcnt = 0;
  }
  static void flush_window(void)
  {
   if (high_loaded) flush_window_high();
   else flush_window_low();
  }
  static void error(char *x)
  {
   puts("\n\n");
   puts(x);
   puts("\n\n -- System halted");
   while(1); /* Halt */
  }
  #define STACK_SIZE (4096)
  long user_stack [STACK_SIZE];
  struct {
   long * a;
   short b;
   } stack_start = { & user_stack [STACK_SIZE] , __KERNEL_DS };
  void setup_normal_output_buffer(void) 对于zImage, 直接解压到1M
  {
  #ifdef STANDARD_MEMORY_BIOS_CALL
   if (EXT_MEM_K < 1024) error("Less than 2MB of memory.\n");
  #else
   if ((ALT_MEM_K > EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) < 1024) error("Less than 2MB of memory.\n");
  #endif
   output_data = (char *)0x100000; /* Points to 1M */
   free_mem_end_ptr = (long)real_mode;
  }
  struct moveparams {
   uch *low_buffer_start; int lcount;
   uch *high_buffer_start; int hcount;
  };
  void setup_output_buffer_if_we_run_high(struct moveparams *mv)
  {
   high_buffer_start = (uch *)(((ulg)&end) + HEAP_SIZE); 内核高端片段的最小起始地址
  #ifdef STANDARD_MEMORY_BIOS_CALL
   if (EXT_MEM_K < (3*1024)) error("Less than 4MB of memory.\n");
  #else
   if ((ALT_MEM_K > EXT_MEM_K ? ALT_MEM_K : EXT_MEM_K) < (3*1024)) error("Less than 4MB of memory.\n");
  #endif
   mv->low_buffer_start = output_data = (char *)LOW_BUFFER_START;
   low_buffer_end = ((unsigned int)real_mode > LOW_BUFFER_MAX
   ? LOW_BUFFER_MAX : (unsigned int)real_mode) & ~0xfff;
   low_buffer_size = low_buffer_end - LOW_BUFFER_START;
   high_loaded = 1;
   free_mem_end_ptr = (long)high_buffer_start;
   if ( (0x100000 + low_buffer_size) > ((ulg)high_buffer_start)) {
   ; 如果高端片段的最小起始地址小于它实际应加载的地址,则将它置为实际地址,
   ; 这样高端片段就无需再次移动了,否则它要向前移动
   high_buffer_start = (uch *)(0x100000 + low_buffer_size);
   mv->hcount = 0; /* say: we need not to move high_buffer */
   }
   else mv->hcount = -1; 待定
   mv->high_buffer_start = high_buffer_start;
  }
  void close_output_buffer_if_we_run_high(struct moveparams *mv)
  {
   if (bytes_out > low_buffer_size) {
   mv->lcount = low_buffer_size;
   if (mv->hcount)
   mv->hcount = bytes_out - low_buffer_size; 求出高端片段的字节数
   } else { 如果解压后内核只有低端的一个片段
   mv->lcount = bytes_out;
   mv->hcount = 0;
   }
  }
  int decompress_kernel(struct moveparams *mv, void *rmode)
  {
   real_mode = rmode;
   if (SCREEN_INFO.orig_video_mode == 7) {
   vidmem = (char *) 0xb0000;
   vidport = 0x3b4;
   } else {
   vidmem = (char *) 0xb8000;
   vidport = 0x3d4;
   }
   lines = SCREEN_INFO.orig_video_lines;
   cols = SCREEN_INFO.orig_video_cols;
   if (free_mem_ptr < 0x100000) setup_normal_output_buffer();
   else setup_output_buffer_if_we_run_high(mv);
   makecrc();
   puts("Uncompressing Linux... ");
   gunzip();
   puts("Ok, booting the kernel.\n");
   if (high_loaded) close_output_buffer_if_we_run_high(mv);
   return high_loaded;
  }
  
  
  
  
  

延伸阅读

文章来源于领测软件测试网 https://www.ltesting.net/


关于领测软件测试网 | 领测软件测试网合作伙伴 | 广告服务 | 投稿指南 | 联系我们 | 网站地图 | 友情链接
版权所有(C) 2003-2010 TestAge(领测软件测试网)|领测国际科技(北京)有限公司|软件测试工程师培训网 All Rights Reserved
北京市海淀区中关村南大街9号北京理工科技大厦1402室 京ICP备10010545号-5
技术支持和业务联系:info@testage.com.cn 电话:010-51297073

软件测试 | 领测国际ISTQBISTQB官网TMMiTMMi认证国际软件测试工程师认证领测软件测试网