Q PDU的核心编码方式已经清楚了,如何实现用AT命令收发短消息呢?
A 在上篇中,我们已经讨论了7-bit, 8bit和UCS2这几种PDU用户信息的编码方式,并且给出了实现代码。现在,重点描述PDU全串的编码和解码过程,以及GSM 07.05的AT命令实现方法。这些是底层的核心代码,为了保证代码的可移植性,我们尽可能不用MFC的类,必要时用ANSI C标准库函数。
首先,定义如下常量和结构:
大家已经注意到PDU串中的号码和时间,都是两两颠倒的字符串。利用下面两个函数可进行正反变换:
// 正常顺序的字符串转换为两两颠倒的字符串,若长度为奇数,补´F´凑成偶数 // 如:"8613851872468" --> "683158812764F8" // pSrc: 源字符串指针 // pDst: 目标字符串指针 // nSrcLength: 源字符串长度 // 返回: 目标字符串长度 int gsmInvertNumbers(const char* pSrc, char* pDst, int nSrcLength) { int nDstLength; // 目标字符串长度 char ch; // 用于保存一个字符 // 复制串长度 nDstLength = nSrcLength; // 两两颠倒 for(int i=0; i<nSrcLength;i+=2) { ch = *pSrc++; // 保存先出现的字符 *pDst++ = *pSrc++; // 复制后出现的字符 *pDst++ = ch; // 复制先出现的字符 } // 源串长度是奇数吗? if(nSrcLength & 1) { *(pDst-2) = ´F´; // 补´F´ nDstLength++; // 目标串长度加1 } // 输出字符串加个结束符 *pDst = ´\0´; // 返回目标字符串长度 return nDstLength; } // 两两颠倒的字符串转换为正常顺序的字符串 // 如:"683158812764F8" --> "8613851872468" // pSrc: 源字符串指针 // pDst: 目标字符串指针 // nSrcLength: 源字符串长度 // 返回: 目标字符串长度 int gsmSerializeNumbers(const char* pSrc, char* pDst, int nSrcLength) { int nDstLength; // 目标字符串长度 char ch; // 用于保存一个字符 // 复制串长度 nDstLength = nSrcLength; // 两两颠倒 for(int i=0; i<nSrcLength;i+=2) { ch = *pSrc++; // 保存先出现的字符 *pDst++ = *pSrc++; // 复制后出现的字符 *pDst++ = ch; // 复制先出现的字符 } // 最后的字符是´F´吗? if(*(pDst-1) == ´F´) { pDst--; nDstLength--; // 目标字符串长度减1 } // 输出字符串加个结束符 *pDst = ´\0´; // 返回目标字符串长度 return nDstLength; }以下是PDU全串的编解码模块。为简化编程,有些字段用了固定值。
// PDU编码,用于编制、发送短消息 // pSrc: 源PDU参数指针 // pDst: 目标PDU串指针 // 返回: 目标PDU串长度 int gsmEncodePdu(const SM_PARAM* pSrc, char* pDst) { int nLength; // 内部用的串长度 int nDstLength; // 目标PDU串长度 unsigned char buf[256]; // 内部用的缓冲区 // SMSC地址信息段 nLength = strlen(pSrc->SCA); // SMSC地址字符串的长度 buf[0] = (char)((nLength & 1) == 0 ? nLength : nLength + 1) / 2 + 1; // SMSC地址信息长度 buf[1] = 0x91; // 固定: 用国际格式号码 nDstLength = gsmBytes2String(buf, pDst, 2); // 转换2个字节到目标PDU串 nDstLength += gsmInvertNumbers(pSrc->SCA, &pDst[nDstLength], nLength); // 转换SMSC到目标PDU串 // TPDU段基本参数、目标地址等 nLength = strlen(pSrc->TPA); // TP-DA地址字符串的长度 buf[0] = 0x11; // 是发送短信(TP-MTI=01),TP-VP用相对格式(TP-VPF=10) buf[1] = 0; // TP-MR=0 buf[2] = (char)nLength; // 目标地址数字个数(TP-DA地址字符串真实长度) buf[3] = 0x91; // 固定: 用国际格式号码 nDstLength += gsmBytes2String(buf, &pDst[nDstLength], 4); // 转换4个字节到目标PDU串 nDstLength += gsmInvertNumbers(pSrc->TPA, &pDst[nDstLength], nLength); // 转换TP-DA到目标PDU串 // TPDU段协议标识、编码方式、用户信息等 nLength = strlen(pSrc->TP_UD); // 用户信息字符串的长度 buf[0] = pSrc->TP_PID; // 协议标识(TP-PID) buf[1] = pSrc->TP_DCS; // 用户信息编码方式(TP-DCS) buf[2] = 0; // 有效期(TP-VP)为5分钟 if(pSrc->TP_DCS == GSM_7BIT) { // 7-bit编码方式 buf[3] = nLength; // 编码前长度 nLength = gsmEncode7bit(pSrc->TP_UD, &buf[4], nLength+1) + 4; // 转换TP-DA到目标PDU串 } else if(pSrc->TP_DCS == GSM_UCS2) { // UCS2编码方式 buf[3] = gsmEncodeUcs2(pSrc->TP_UD, &buf[4], nLength); // 转换TP-DA到目标PDU串 nLength = buf[3] + 4; // nLength等于该段数据长度 } else { // 8-bit编码方式 buf[3] = gsmEncode8bit(pSrc->TP_UD, &buf[4], nLength); // 转换TP-DA到目标PDU串 nLength = buf[3] + 4; // nLength等于该段数据长度 } nDstLength += gsmBytes2String(buf, &pDst[nDstLength], nLength); // 转换该段数据到目标PDU串 // 返回目标字符串长度 return nDstLength; } // PDU解码,用于接收、阅读短消息 // pSrc: 源PDU串指针 // pDst: 目标PDU参数指针 // 返回: 用户信息串长度 int gsmDecodePdu(const char* pSrc, SM_PARAM* pDst) { int nDstLength; // 目标PDU串长度 unsigned char tmp; // 内部用的临时字节变量 unsigned char buf[256]; // 内部用的缓冲区 // SMSC地址信息段 gsmString2Bytes(pSrc, &tmp, 2); // 取长度 tmp = (tmp - 1) * 2; // SMSC号码串长度 pSrc += 4; // 指针后移 gsmSerializeNumbers(pSrc, pDst->SCA, tmp); // 转换SMSC号码到目标PDU串 pSrc += tmp; // 指针后移 // TPDU段基本参数、回复地址等 gsmString2Bytes(pSrc, &tmp, 2); // 取基本参数 pSrc += 2; // 指针后移 if(tmp & 0x80) { // 包含回复地址,取回复地址信息 gsmString2Bytes(pSrc, &tmp, 2); // 取长度 if(tmp & 1) tmp += 1; // 调整奇偶性 pSrc += 4; // 指针后移 gsmSerializeNumbers(pSrc, pDst->TPA, tmp); // 取TP-RA号码 pSrc += tmp; // 指针后移 } // TPDU段协议标识、编码方式、用户信息等 gsmString2Bytes(pSrc, (unsigned char*)&pDst->TP_PID, 2); // 取协议标识(TP-PID) pSrc += 2; // 指针后移 gsmString2Bytes(pSrc, (unsigned char*)&pDst->TP_DCS, 2); // 取编码方式(TP-DCS) pSrc += 2; // 指针后移 gsmSerializeNumbers(pSrc, pDst->TP_SCTS, 14); // 服务时间戳字符串(TP_SCTS) pSrc += 14; // 指针后移 gsmString2Bytes(pSrc, &tmp, 2); // 用户信息长度(TP-UDL) pSrc += 2; // 指针后移 if(pDst->TP_DCS == GSM_7BIT) { // 7-bit解码 nDstLength = gsmString2Bytes(pSrc, buf, tmp & 7 ? (int)tmp * 7 / 4 + 2 : (int)tmp * 7 / 4); // 格式转换 gsmDecode7bit(buf, pDst->TP_UD, nDstLength); // 转换到TP-DU nDstLength = tmp; } else if(pDst->TP_DCS == GSM_UCS2) { // UCS2解码 nDstLength = gsmString2Bytes(pSrc, buf, tmp * 2); // 格式转换 nDstLength = gsmDecodeUcs2(buf, pDst->TP_UD, nDstLength); // 转换到TP-DU } else { // 8-bit解码 nDstLength = gsmString2Bytes(pSrc, buf, tmp * 2); // 格式转换 nDstLength = gsmDecode8bit(buf, pDst->TP_UD, nDstLength); // 转换到TP-DU } // 返回目标字符串长度 return nDstLength; }依照GSM 07.05,发送短消息用AT+CMGS命令,阅读短消息用AT+CMGR命令,列出短消息用AT+CMGL命令,删除短消息用AT+CMGD命令。但AT+CMGL命令能够读出所有的短消息,所以我们用它实现阅读短消息功能,而没用AT+CMGR。下面是发送、读取和删除短消息的实现代码:
// 发送短消息 // pSrc: 源PDU参数指针 BOOL gsmSendMessage(const SM_PARAM* pSrc) { int nPduLength; // PDU串长度 unsigned char nSmscLength; // SMSC串长度 int nLength; // 串口收到的数据长度 char cmd[16]; // 命令串 char pdu[512]; // PDU串 char ans[128]; // 应答串 nPduLength = gsmEncodePdu(pSrc, pdu); // 根据PDU参数,编码PDU串 strcat(pdu, "\x01a"); // 以Ctrl-Z结束 gsmString2Bytes(pdu, &nSmscLength, 2); // 取PDU串中的SMSC信息长度 nSmscLength++; // 加上长度字节本身 // 命令中的长度,不包括SMSC信息长度,以数据字节计 sprintf(cmd, "AT+CMGS=%d\r", nPduLength / 2 - nSmscLength); // 生成命令 WriteComm(cmd, strlen(cmd)); // 先输出命令串 nLength = ReadComm(ans, 128); // 读应答数据 // 根据能否找到"\r\n> "决定成功与否 if(nLength == 4 && strncmp(ans, "\r\n> ", 4) == 0) { WriteComm(pdu, strlen(pdu)); // 得到肯定回答,继续输出PDU串 nLength = ReadComm(ans, 128); // 读应答数据 // 根据能否找到"+CMS ERROR"决定成功与否 if(nLength > 0 && strncmp(ans, "+CMS ERROR", 10) != 0) { return TRUE; } } return FALSE; } // 读取短消息 // 用+CMGL代替+CMGR,可一次性读出全部短消息 // pMsg: 短消息缓冲区,必须足够大 // 返回: 短消息条数 int gsmReadMessage(SM_PARAM* pMsg) { int nLength; // 串口收到的数据长度 int nMsg; // 短消息计数值 char* ptr; // 内部用的数据指针 char cmd[16]; // 命令串 char ans[1024]; // 应答串 nMsg = 0; ptr = ans; sprintf(cmd, "AT+CMGL\r"); // 生成命令 WriteComm(cmd, strlen(cmd)); // 输出命令串 nLength = ReadComm(ans, 1024); // 读应答数据 // 根据能否找到"+CMS ERROR"决定成功与否 if(nLength > 0 && strncmp(ans, "+CMS ERROR", 10) != 0) { // 循环读取每一条短消息, 以"+CMGL:"开头 while((ptr = strstr(ptr, "+CMGL:")) != NULL) { ptr += 6; // 跳过"+CMGL:" sscanf(ptr, "%d", &pMsg->index); // 读取序号 TRACE(" index=%d\n",pMsg->index); ptr = strstr(ptr, "\r\n"); // 找下一行 ptr += 2; // 跳过"\r\n" gsmDecodePdu(ptr, pMsg); // PDU串解码 pMsg++; // 准备读下一条短消息 nMsg++; // 短消息计数加1 } } return nMsg; } // 删除短消息 // index: 短消息序号,从1开始 BOOL gsmDeleteMessage(const int index) { int nLength; // 串口收到的数据长度 char cmd[16]; // 命令串 char ans[128]; // 应答串 sprintf(cmd, "AT+CMGD=%d\r", index); // 生成命令 // 输出命令串 WriteComm(cmd, strlen(cmd)); // 读应答数据 nLength = ReadComm(ans, 128); // 根据能否找到"+CMS ERROR"决定成功与否 if(nLength > 0 && strncmp(ans, "+CMS ERROR", 10) != 0) { return TRUE; } return FALSE; }以上发送AT命令过程中用到了WriteComm和ReadComm函数,它们是用来读写串口的,依赖于具体的操作系统。在Windows环境下,除了用MSComm控件,以及某些现成的串口通信类之外,也可以简单地调用一些Windows API用实现。以下是利用API实现的主要代码,注意我们用的是超时控制的同步(阻塞)模式。
// 串口设备句柄 HANDLE hComm; // 打开串口 // pPort: 串口名称或设备路径,可用"COM1"或"\\.\COM1"两种方式,建议用后者 // nBaudRate: 波特率 // nParity: 奇偶校验 // nByteSize: 数据字节宽度 // nStopBits: 停止位 BOOL OpenComm(const char* pPort, int nBaudRate, int nParity, int nByteSize, int nStopBits) { DCB dcb; // 串口控制块 COMMTIMEOUTS timeouts = { // 串口超时控制参数 100, // 读字符间隔超时时间: 100 ms 1, // 读操作时每字符的时间: 1 ms (n个字符总共为n ms) 500, // 基本的(额外的)读超时时间: 500 ms 1, // 写操作时每字符的时间: 1 ms (n个字符总共为n ms) 100}; // 基本的(额外的)写超时时间: 100 ms hComm = CreateFile(pPort, // 串口名称或设备路径 GENERIC_READ | GENERIC_WRITE, // 读写方式 0, // 共享方式:独占 NULL, // 默认的安全描述符 OPEN_EXISTING, // 创建方式 0, // 不需设置文件属性 NULL); // 不需参照模板文件 if(hComm == INVALID_HANDLE_VALUE) return FALSE; // 打开串口失败 GetCommState(hComm, &dcb); // 取DCB dcb.BaudRate = nBaudRate; dcb.ByteSize = nByteSize; dcb.Parity = nParity; dcb.StopBits = nStopBits; SetCommState(hComm, &dcb); // 设置DCB SetupComm(hComm, 4096, 1024); // 设置输入输出缓冲区大小 SetCommTimeouts(hComm, &timeouts); // 设置超时 return TRUE; } // 关闭串口 BOOL CloseComm() { return CloseHandle(hComm); } // 写串口 // pData: 待写的数据缓冲区指针 // nLength: 待写的数据长度 void WriteComm(void* pData, int nLength) { DWORD dwNumWrite; // 串口发出的数据长度 WriteFile(hComm, pData, (DWORD)nLength, &dwNumWrite, NULL); } // 读串口 // pData: 待读的数据缓冲区指针 // nLength: 待读的最大数据长度 // 返回: 实际读入的数据长度 int ReadComm(void* pData, int nLength) { DWORD dwNumRead; // 串口收到的数据长度 ReadFile(hComm, pData, (DWORD)nLength, &dwNumRead, NULL); return (int)dwNumRead; }Q 在用AT命令同手机通信时,需要注意哪些问题?
A 任何一个AT命令发给手机,都可能返回成功或失败。例如,用AT+CMGS命令发送短消息时,如果此时正好手机处于振铃或通话状态,就会返回一个"+CMS ERROR"。所以,应当在发送命令后,检测手机的响应,失败后重发。而且,因为只有一个通信端口,发送和接收不可能同时进行。
如果串口通信用超时控制的同步(阻塞)模式,一般做法是专门将发送/接收处理封装在一个工作子线程内。因为代码较多,这里就不详细介绍了。所附的Demo中,包含了完整的子线程和发送/接收应用程序界面的源码。
Q 以上AT命令,是不是所有厂家的手机都支持?
A ETSI GSM 07.05规范直到1998年才形成最终Release版本(Ver 7.0.1),在这之前及之后一段时间内,不排除各厂商在DTE-DCE的短消息AT命令有所不同的可能性。我们用到的几个PDU模式下的AT命令,是基本的命令,从原则上讲,各厂家的手机以及GSM模块应该都支持,但可能有细微差别。
Q 用户信息(TP-UD)内除了一般意义上的短消息,还可以是图片和声音数据。关于手机铃声和图片格式方面,有什么规范吗?
A 为统一手机铃声、图片格式,Motorola和Ericsson, Siemens, Alcatel等共同开发了EMS(Enhanced Messaging Service)标准,并于2002年2月份公布。这些厂商格式相同。但另一手机巨头Nokia未参加标准的制定,手机铃声、图片格式与它们不同。所以没有形成统一的规范。EMS其实并没有超越GSM 07.05,只是TP-UD数据部分包含一定格式而已。各厂家的手机铃声、图片格式资料,可以查阅相关网站。
Q 用户信息(TP-UD)其实可以是任何的自定义数据,是吗?
A 是的,尽管手机上会显示乱码。这种情况下,编码方式已经没有任何意义。但注意仍然要遵守规范。比如,若指定7-bit编码方式,TP-UDL应等于实际数据长度的8/7(用进一法,而不是四舍五入)。在利用SMS进行点对点或多点对一点的数据通信的应用中,可以传输各种自定义数据,如GPS信息,环境监测信息,加密的个人信息,等等。
如果在传输自定义数据的同时还要收发普通短消息,最简单的办法是在数据前面额外加个识别标志,比如"FFFF",以区分自定义数据和普通短消息。
[相关资源]
◆ 本文Demo源码: (31 KB)
◆ ETSI官方网站:
◆ 爱赛德公司下载中心:
◆ bhw98的专栏:
首次发布:2003-03-23
最后修订:2003-03-26
文章来源于领测软件测试网 https://www.ltesting.net/