【4】选择排序
基本思想是:每次选出第i小的记录,放在第i个位置(i的起点是0,按此说法,第0小的记录实际上就是最小的,有点别扭,不管这么多了)。当i=N-1时就排完了。
直接选择排序
直选排序简单的再现了选择排序的基本思想,第一次寻找最小元素的代价是O(n),如果不做某种特殊处理,每次都使用最简单的寻找方法,自然的整个排序的时间复杂度就是O(n2)了。
template <class T>
void SelectSort(T a[], int N, int& KCN, int& RMN)
{
KCN = 0; RMN = 0;
for (int i = 0; i < N; i++)
{
for (int j = i + 1, k = i; j < N; j++) if (++KCN && a[j] < a[k]) k = j;//select min
if (k != i) { swap(a[k], a[i]); RMN += 3; }
}
}
测试结果:
Sort ascending N=10000 TimeSpared: 721ms
KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
RMN=0 RMN/N=0 RMN/N^2=0 RMN/NlogN=0
Sort randomness N=10000 TimeSpared: 711ms
KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
RMN=29955 RMN/N=2.9955 RMN/N^2=0.00029955 RMN/NlogN=0.225434
Sort descending N=10000 TimeSpared: 711ms
KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
RMN=15000 RMN/N=1.5 RMN/N^2=0.00015 RMN/NlogN=0.112886
可以看到KCN固定为n(n-1)/2。另外一件有趣的事是,RMN=0的正序花的时间居然比RMN接近3(n-1)的乱序还多。一是说明测试精度不够,在我的机器上多次测试结果上下浮动10ms是常有的事;二是说明和KCN的n(n-1)/2相比,RMN的3(n-1)有些微不足道。
锦标排序
从直选排序看来,算法的瓶颈在于KCN,而实际上,对于后续的寻找最小值来说,时间复杂度可以降到O(logn)。最为直接的做法是采用锦标赛的办法,将冠军拿走之后,只要把冠军打过的比赛重赛一遍,那么剩下的人中的“冠军”就产生了,而重赛的次数就是竞赛树的深度。实际写的时候,弄不好就会写得很“蠢”,不只多余占用了大量内存,还会导致无用的判断。我没见过让人满意的例程(殷版上的实在太恶心了),自己又写不出来漂亮的,也就不献丑了(其实这是惰性的缘故,有了快排之后,大多数人都不会对其他内排感兴趣,除了基数排序)。实在无聊的时候,不妨写(或者改进)锦标排序来打发时间,^_^。
堆排序
锦标排序的附加储存太多了,而高效的寻找最大值或最小值(O(logn)),我们还有一种方法是堆。这里使用了最大堆,用待排记录的空间充当堆空间,将堆顶的记录(目前最大)和堆的最后一个记录交换,当堆逐渐缩小成1的时候,记录就排序完成了。显而易见的,时间复杂度为O(nlogn),并且没有很糟的情况。
template <class T>
void FilterDown(T a[], int i, int N, int& KCN, int& RMN)
{
int child = 2 * i + 1; T temp = a[i];
while (child < N)
{
if (child < N - 1 && a[child] < a[child+1]) child++;
if (++KCN && temp >= a[child]) break;//不需调整,结束调整
a[i] = a[child]; RMN++;
i = child; child = 2 * i + 1;
}
a[i] = temp; RMN++;
}
template <class T>
void HeapSort(T a[], int N, int& KCN, int& RMN)
{
int i;
for (i = (N - 2)/2; i >= 0; i--) FilterDown<T>(a, i, N, KCN, RMN);//生成最大堆
for (i = N - 1; i > 0; i--)
{
swap(a[0], a[i]); RMN += 3;
FilterDown(a, 0, i, KCN, RMN);
}
}
测试结果,直接测试的是N=100000:
Sort ascending N=100000 TimeSpared: 110ms
KCN=1556441 KCN/N=15.5644 KCN/N^2=0.000155644KCN/NlogN=0.937071
RMN=2000851 RMN/N=20.0085 RMN/N^2=0.000200085RMN/NlogN=1.20463
Sort randomness N=100000 TimeSpared: 160ms
KCN=3047006 KCN/N=30.4701 KCN/N^2=0.000304701KCN/NlogN=1.83448
RMN=3898565 RMN/N=38.9857 RMN/N^2=0.000389857RMN/NlogN=2.34717
Sort descending N=100000 TimeSpared: 90ms
KCN=4510383 KCN/N=45.1038 KCN/N^2=0.000451038KCN/NlogN=2.71552
RMN=5745996 RMN/N=57.46 RMN/N^2=0.0005746 RMN/NlogN=3.45943
整体性能非常不错,附加储存1,还没有很糟的情况,如果实在不放心快排的最坏情况,堆排确实是个好选择。这里仍然出现了KCN、RMN多的反而消耗时间少的例子——误差70ms是不可能的,看来CPU优化的作用还是非常明显的(可能还和Cache有关)。
文章来源于领测软件测试网 https://www.ltesting.net/